SUBJECT CODE: UCH168C/UCH268C	ENCINEEDING CHEMISTDV	Credits: 04
L:T:P - 3 : 2 : 0	ENGINEERING CHEMISIRI	CIE Marks: 50
Total Hours/Week: 05		SEE Marks: 50

Water Technology:

Introduction, sources, impurities and specifications of water, Boiler feed water - boiler problems, Scale and sludge formation, priming and foaming, boiler corrosion (due to dissolved O₂, CO₂ and MgCl₂).

UNIT-I

Chemical analysis of water: Standard for portable water, Determination of; Dissolved oxygen, Chlorides, Sulphates, TDS and numerical problems.

Water softening: Softening of water by ion exchange process. Desalination of sea water by reverse osmosis.

Self Study: BOD and its determination.

Electro Chemical Technology

Introduction, Origin of electrode potential, Nernst equation, concentration cell, numerical on Concentration cell, Reference electrode – Calomel electrode. Determination of single electrode potential using calomel electrode, Ion selective Selective Electrode – Glass electrode, Determination of pH of solution using glass electrode.

Energy storage devices: Introduction, Basic concept, Classification, Characteristics of batteries.

Construction and working of;

1) Nickel Metal hydride battery

2) Lithium ion batteries;

i) Li-Air battery ii) Li-Cobalt oxide battery iii) Li-Sulphur battery

UNIT-II

Self Study: Electrochemical Sensors & applications.

18Hrs.

16Hrs.

Corrosion Science:

Introduction, Corrosion – Definition, Types of corrosion, Chemical (Dry) and Electrochemical (Wet) corrosion. Theory of electrochemical corrosion by taking Iron as an example. Types of Electrochemical corrosion - Differential metal corrosion, Differential aeration corrosion. e.g. water line corrosion, Pitting corrosion. Stress corrosion e.g. Caustic embrittlement. Factors affecting the rate of corrosion; Related to metal & Related to environment. Numerical problems on Corrosion Penetration Rate (CPR) & Weight loss method.

Corrosion Control: Protective coatings: Inorganic coatings – (i) Anodizing – meaning, Anodizing of Al and applications (ii) Phosphating – process and applications. Cathodic protection - i) Sacrificial anodic method ii) Impressed current method.

Self study: Corrosion control by Metallic coating methods.

Metal Finishing : Introduction, Technological importance of metal finishing. Factors governing electroplating - Polarization, Decomposition potential and Over voltage.

Electroplating process: Theory of electroplating - Definition, Principle components of an electroplating bath. Effects of plating variables on the nature of electro deposit.

Determination of throwing power of plating bath by Harring-Blum cell and Numerical problems. Surface preparation for electroplating. Electroplating of Chromium and applications.

Electroless plating process: Meaning, Distinction between electroplating and electroless plating. Surface preparation, Electroless plating of Copper on PCB and applications. *Self study:* Information on Multifunctional Coating.

study: Information on Multifunctional Coati UNIT-III

16Hrs.

Green Chemistry:

Introduction, definition, Major environmental pollutants, Basic principles of green chemistry (12 principles). Various green chemical approaches – Microwave synthesis, Bio catalysed reactions, Phase transfer catalysis. Super critical conditions for solvent free reactions. Synthesis of typical organic compounds by conventional and green route; i) Adipic acid ii) Paracetamol

Atom economy – Synthesis of Ethylene oxide & Mehtyl Methacrylate. Industrial applications of green chemistry, Numerical problems on Atom economy.

Self study: Information on recent green technology, green chemical products and application

Fuel Technology :

Non Renewable Energy Sources: Introduction, Definition, classification, characteristics of fuel, Combustion, Calorific value- Definition, HCV, LCV, Determination of CV solid/liquid fuel by Bomb calorimeter, numerical problems.

Renewable Energy Sources:

Biofuel - Introduction, Classification of biofuels. Biomass, Sources of biomass. Biodieselproduction of biodiesel by trans-esterification, mechanism of acid catalyzed reaction and alkali catalyzed reactions. Advantages and disadvantages of biodiesel. Fuel cell technology eg: $CH_3OH - O_2$ fuel cell.

Solar Energy – P.V.Cell; Introduction , Construction and Working of Typical P.V.Cell, Preparation of solar grade silicon by union carbide process, Advantages & Disadvantages of P.V.Cell.

Self study: Information on Wind Energy.

Polymer materials:

Introduction, definitions, classification, polymerization types. Mechanism of polymerization- Cationic/Anionic polymerizations of styrene. Molecular weight of polymers- Number average and weight average methods, numerical problems. Glass transition temperature and factors affecting. Synthesis, properties and applications of; i) Epoxy resin ii) Silicon rubber iii) PLA iv) PET.

Conducting polymers – Definition, Mechanism of conduction in polyacetylene and applications, Graphene – introduction, Mechanism of conduction in graphene and applications.

Self study: Polymer membranes and their applications

Dyes: Introduction, definition, sensation of colour, classification based on applications of dyes. Theories of dyes- Wit theory, Electronic theory, Relationship of absorbed and visible colours. Synthesis, Properties and applications of; i) Azo dyes

Fluorescent dyes – Introduction, Classification, flurophores and their bio-Applications. **Self study:** Information on food dyes with example and applications

Reference Books

Text Books:

- 1. Dr. Suba Ramesh etal (2011), Engineering Chemistry (1st edition), Wiley India Pvt. Ltd., Delhi.
- Shashi Chawla (2003), A Text Book of Engineering Chemistry (3rd edition), Dhantpat Rai & Co. Pvt., Pub. Delhi.

Reference Books:

- 1. Dr. Dhara.S.S. & Dr. Omare.S.S (2010), Engineering Chemistry (12th edition), S. Chand & Company Ltd., Delhi.
- 2. Jain & Jain (2013), Engineering Chemistry (16th edition), Dhanapath Rai pub. Co.
- 3. Kenneth Doxsee & James Huchison (2004), Green Organic Chemistry (1st edition), Thomson-Brooks/Cole.
- 4. David M. Mousdale (2017), Introduction to Bio fuels (3rd edition), CRC Press.

Course Outcomes**

After completion of the course student will be able to

- 1. Apply and demonstrate quantitative chemical analysis and electrochemical analysis techniques and incorporate new methods to produce soft water for industrial and domestic use at cheaper cost.
- 2. Analyze engineering problems related to corrosion and develop/practice suitable preventive measures. Utilize surface modification methods to improve various cost effective properties of

materials.

- 3. Apply the principles of green chemistry in design and development of alternative ecofriendly chemical synthesis methods to minimize hazardous substances and impart the knowledge of conventional and non-conventional energy sources and their effective management.
- 4. Acquire the knowledge of different polymer materials and dyes for wide variety of engineering applications.
 - * Books to be listed as per the format with decreasing level of coverage of syllabus

**	Each	CO t	o be v	vritten	with p	roper	action	word	and	should	be	assess	able	and	quant	ifiable

Course Outcomes	Programme Outcomes (POs)									Program Specific Outcomes (PSOs)					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1										1			
CO2	3	2	1									1			
CO3	3	2	1				2					1			
CO4	3	1	1									1			

SUBJECT CODE: UCH172L/272L L:T:P - 0 - 0 - 3

Total Hours/Week: 03

ENGINEERING CHEMISTRY LABORATORY

Credits: 1.5

CIE Marks: 50 SEE Marks: 50

SI. No.

Name of the experiment

PART – A

- 1. Determination of viscosity of liquid by Ostwald's Viscometer.
- 2. Potentiometric estimation of Iron in the given solution using standard $K_2Cr_2O_7$ solution.
- 3. Determination of pKa of a weak acid by standard NaOH using pH meter.
- 4. Conductometric estimation of HCl & CH₃COOH in acid mixture by Standard NaOH.
- 5. Colorimetric estimation of copper in the given solution.

PART – B

- 1. Preparation standard solution and Standardization of a given solution.
- 2. Determination of total hardness of a given water sample by EDTA method.
- 3. Determination of amount of CaO in the cement solution by EDTA method.
- 4. Determination of alkalinity of water sample by duel indicator method.
- 5. Determination of amount of Fe in a given solution using standard $K_2Cr_2O_7$ solution.

Reference Books

Text Books: Reference Books:

- 1. Sudharani (2012), Laboratory manual in Engineering Chemistry (3rd edition), Dhanapat Rai Publishing Company Private Limited, New Delhi.
- 2. Jeffery.G.H., Basett.J., Mendham.J & Denney R.C.(1989), Vogel's Test Book of quantitative Chemical Analysis (5th edition), John Wiley & Sons.Inc., New York.
- Sunita Rattan (2009), Practical Engineering Chemistry (2nd edition). Publisher S.K.Kataria & Sons.

Course Outcomes

After completion of the course student will be able to

- 1. Write systematic procedure for setting up & conduct of experiment.
- 2. Perform experiment on volumetric analysis individually along with interpretation of / results of analysis and calculation.
- 3. Perform experiments using instruments for trace of chemical analysis with high accuracy.
- 4. Incorporate the practical knowledge of chemistry for engineering applications.

Course Outcomes	Programme Outcomes (POs)									Program Specific Outcomes (PSOs)					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2										1			
CO2	3	2										1			
CO3	3	2										1			
CO4	3	2										1			