SUBJECT CODE: 21UCH110C/UCH210CL:T:P - 3 : 0 : 0

ENGINEERING CHEMISTRY

Credits: 03
CIE Marks: 50
SEE Marks: 50

Total Hours/Week: 3

UNIT-I 10 Hrs.

Water Technology:

Introduction, sources, impurities and specifications of water, Hardness of water, Basic terms, Determination of total hardness of water by EDTA method, Numerical problems. Boiler feed water - boiler problems, Scale and sludge formation, priming and foaming, boiler corrosion (due to dissolved O₂, CO₂ and MgCl₂).

Chemical analysis of water: Standard for portable water, Determination of; Dissolved oxygen, Chlorides. Water softening - Desalination of sea water by reverse osmosis.

Self Study: Softening of water by ion exchange process.

Electro Chemical Technology:

Introduction, Origin of electrode potential, Nernst equation, concentration cell, numerical problems on concentration cell, Reference electrode – Calomel electrode. Determination of single electrode potential using calomel electrode, Ion Selective Electrode – Glass electrode, Determination of pH of solution using glass electrode.

Energy storage devices: Introduction, Basic concept, Classification, Characteristics of batteries.

Construction and working of; 1) Nickel Metal hydride battery 2) Li-Cobalt oxide battery **Self Study:** Different types of Reference electrodes and their working principle.

UNIT-II 10 Hrs.

Corrosion Science:

Introduction, Corrosion – Definition, Types of corrosion, Chemical (Dry) and Electrochemical (Wet) corrosion. Theory of electrochemical corrosion by taking Iron as an example. Types of Electrochemical corrosion - Differential metal corrosion, Differential aeration corrosion. e.g. water line corrosion, Pitting corrosion. Stress corrosion e.g. Caustic embrittlement. Factors affecting the rate of corrosion; Related to metal & Related to environment. Numerical problems on Corrosion Penetration Rate (CPR) & Weight loss method.

Corrosion Control: Protective coatings: Inorganic coatings, Anodizing – meaning, Anodizing of Al and applications. Cathodic protection - i) Sacrificial anodic method ii) Impressed current method.

Self study: Metallic coating methods.

Metal Finishing:

Introduction, Technological importance of metal finishing. Factors governing

electroplating - Polarization, Decomposition potential and Over voltage.

Electroplating process: Theory of electroplating - Definition, Principle components of an electroplating bath. Effects of plating variables on the nature of electro deposit. Determination of throwing power of plating bath by Harring - Blum cell and Numerical problems. Surface preparation for electroplating. Electroplating of Chromium (Decorative & Hard) and its applications.

Electroless plating process: Meaning, Distinction between electroplating and electroless plating. Surface preparation, Electroless plating of Copper on PCB and its applications.

Self study: Electroplating of Gold and Electroless plating of Ni on Al

UNIT-III 10 Hrs.

Green Chemistry:

Introduction, definition, Major environmental pollutants, Basic principles of green chemistry (12 principles). Various green chemical approaches – Microwave synthesis, Bio catalysed reactions, Phase transfer catalysis. Super critical conditions for solvent free reactions. Synthesis of typical organic compounds by conventional and green route; i) Adipic acid ii) Paracetamol

Atom economy – Atom economy calculations on synthesis of Ethylene oxide & Methyl Methacrylate. Numerical problems on Atom economy calculations. Industrial applications of green chemistry.

Self study: Information on recent green technology in industry.

Fuel Technology:

Non Renewable Energy Sources

Chemical Fuels: Introduction, Definition, classification, characteristics of fuel, Combustion, Calorific value - Definition, HCV, LCV, Determination of CV solid/liquid fuel by Bomb calorimeter, numerical problems.

Renewable Energy Sources

Biofuel - Introduction, Classification of biofuel. Biomass, Sources of biomass. Biodiesel-production of biodiesel by alkali catalyzed trans - esterification methods. Advantages and disadvantages of biodiesel.

Solar Energy – Photo Voltaic Cell; Introduction, Construction and Working of Typical P.V.Cell, Preparation of solar grade silicon by union carbide process, Advantages & Disadvantages of P.V.Cell.

Self study: Fuel cell technology eg: $CH_3OH - O_2$ fuel cell.

UNIT-IV 10 Hrs.

Polymer materials:

Introduction, definitions, classification, types of polymerization. Ionic polymerization; Mechanism of polymerization – Cationic and Anionic polymerizations of styrene. Molecular weight of polymers- Number average and weight average methods, numerical

problems. Glass transition temperature and factors affecting Tg & its significance. Synthesis, properties and applications of; i) Epoxy resin ii) Silicon rubber iii) PLA iv) PET.

Conducting polymers : Introduction – Definition, Mechanism of conduction in poly acetylene and its applications.

Self study: *Polymer composites.*

Dyes: Introduction, definition, sensation of colour, classification based on chromophores. Theories of dyes- Witt theory & Electronic theory. Synthesis and applications of; i) Phenolphthalein ii) Methyl orange iii) Malachite green. Applications of Phenolphthalein & Methyl orange in chemical analysis.

Self study: *Information on food dyes with example and applications*

Reference Books

Text Books:

- 1. Dr. Suba Ramesh etal (2011), Engineering Chemistry (1st edition), Wiley India Pvt. Ltd., Delhi.
- 2. Shashi Chawla (2003), A Text Book of Engineering Chemistry (3rd edition), Dhantpat Rai & Co. Pvt., Pub. Delhi.

Reference Books:

- 1. Dr. Dhara.S.S. & Dr. Omare.S.S (2010), Engineering Chemistry (12th edition), S. Chand & Company Ltd., Delhi.
- 2. Jain & Jain (2013), Engineering Chemistry (16th edition), Dhanapath Rai pub. Co.
- 3. Dr. Timmanagoudar P. L. & Dr. Patil S. K. (2014), A Text Book of Engineering Chemistry (1st edition), EBPB, Gadag.
- 3. Kenneth Doxsee & James Huchison (2004), Green Organic Chemistry (1st edition), Thomson-Brooks/Cole.
- 4. David M. Mousdale (2017), Introduction to Bio fuels (3rd edition), CRC Press.

Course Outcomes

After completion of the course student will be able to

- 1. apply and demonstrate quantitative chemical analysis and electrochemical analysis techniques & incorporate new methods to produce soft water for industrial & domestic use at cheaper cost.
- 2. analyze engineering problems related to corrosion and develop/practice suitable preventive measures. Utilize surface modification methods to improve various cost effective properties of materials.
- 3. apply the principles of green chemistry in design and development of alternative ecofriendly chemical synthesis methods to minimize hazardous substances and impart the knowledge of conventional and non-conventional energy sources and their effective

management.

4. acquire the knowledge of different polymer materials and dyes for wide variety of engineering applications.

Course Outcomes	Programme Outcomes (POs)												Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3		1		1						1	1			
CO2	3	3		1		1						1	1	2	1	
CO3	3	2				1						2	1	1	2	
CO4	3	1											1	1	1	

SUBJECT CODE:

21UCH114L/UCH214L

L:T:P - 0 - 0 - 2

Total Hours/Week: 02

ENGINEERING CHEMISTRY LABORATORY

Credits: 1.0

CIE Marks: 50

SEE Marks: 50

Sl. No. Name of the experiment

PART – A

- 1. Potentiometric estimation of Iron in the given solution using standard K₂Cr₂O₇ solution.
- 2. Determination of pKa of a weak acid by standard NaOH using pH meter.
- 3. Conductometric estimation of HCl & CH₃COOH in acid mixture by Standard NaOH.
- 4. Colorimetric estimation of copper in the given solution.

PART - B

- 1. Preparation standard solution and Standardization of a given solution.
- 2. Determination of total hardness of a given water sample by EDTA method.
- 3. Determination of alkalinity of water sample by duel indicator method.
- 4. Determination of amount of Fe in a given solution using standard K₂Cr₂O₇ solution.

Virtual lab

- 1. Gravimetric estimation of metals.
- 2. Determination of viscosity of liquid by Ostwald's Viscometer.

Reference Books

Text Books:

Reference Books:

- 1. Sudharani (2012), Laboratory manual in Engineering Chemistry (3rd edition), Dhanapat Rai Publishing Company Private Limited, New Delhi.
- 2. Jeffery.G.H., Basett.J., Mendham.J & Denney R.C.(1989), Vogel's Test Book of quantitative Chemical Analysis (5th edition), John Wiley & Sons. Inc., New York.
- 3. Sunita Rattan (2009), Practical Engineering Chemistry (2nd edition). Publisher S.K.Kataria & Sons.

Course Outcomes

After completion of the course student will be able to

- 1. Write systematic procedure for setting up & conduct of experiment.
- 2. Perform experiment on volumetric analysis individually along with interpretation of / results of analysis and calculation.
- 3. Perform experiments using instruments for trace of chemical analysis with high accuracy.
- 4. Incorporate the practical knowledge of chemistry for engineering applications.

Course Outcomes	Programme Outcomes (POs)								Program Specific Outcomes (PSOs)						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	1		2						1	3	1	1
CO2	2	1	1	2	2	2		1	1			1	3	1	1
CO3	2	2		2	2	2	2	1	1			1	3	1	1
CO4	2	1		2	2	2			1			1	3	1	1