BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOT

COURSE PLAN

Title of Course	:	Analysis and Design of Algorithms	Course Code	:	UCS551C
Credits	:	4	Contact Hours/ Week	:	3Hrs/Week
Total Hours	:	05	Tutorial Hours	:	2Hrs/Week
CIE Marks	:	50	SEE Marks	:	50
Semester	:	V	Year	:	2022-23

Prerequisites: Data Structures

Course Objectives:

	The Course objectives are:
1	Have insight into the basics of various algorithmic design techniques.
2	To develop proficiency in algorithmic approaches of Brute Force, Divide and Conquer, Decrease and conquer, Greedy and Dynamic programming.

Course Outcomes:

	At the end of the course the student should be able to:
1	Analyze the asymptotic performance of algorithms.
2	Demonstrate a familiarity with major algorithms and data structures.
3	Implement the algorithms to ascertain their working.
4	Apply important algorithmic design paradigms and methods of analysis.
5	Synthesize efficient algorithms in common engineering design situations.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2	PSO3
No	Programme Outcomes Course Outcomes															
The	students will be able to:															
1	Analyze the asymptotic performance of algorithms	2	3	3		1							2		3	3
2	Demonstrate a familiarity with major algorithms and data structures.	2	3	3	2	3									2	
3	Implement the algorithms to ascertain their working.	2	2	3	2	3							3		3	2
4	Apply important algorithmic design paradigms and methods of analysis	2	2	3	3	2									2	

5	Synthesize e	efficient algorithm	ns in											
	common e	engineering de	esign											
	situations.		1	2	2	3	2					3	1	2

Competencies Addressed in the course and Corresponding Performance Indicators

Programme Outcome: Any of 1 to 12 PO's:

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

Competency	Indicators
2.1 Demonstrate an ability to identify and formulate complex engineering problem	2.5.1 Evaluate problem statements and identifies objectives
	2.5.2 Identify modules/algorithms of a computer
	based system and parameters to solve a problem
	2.5.3 Identify algorithmic knowledge that applies to a given problem
2.6 Demonstrate an ability to formulate a solution plan and methodology for an engineering problem	2.6.1 Reframe the computer-based system into interconnected subsystems
	2.6.2 Identify functionalities and computing resources.
	2.6.3 Identify existing solution/methods to solve the problem, including forming justified approximations and assumptions
	2.6.4 Compare and contrast alternative solution/methods to select the best methods
	2.6.5 Compare and contrast alternative solution processes to select the best process.
2.7 Demonstrate an ability to formulate and	2.7.1 Able to apply computer engineering principles to
interpret a model	formulate modules of a system with required applicability and performance.
	2.7.2 Identify design constraints for required performance criteria.
2.8 Demonstrate an ability to execute a solution process and analyze results	2.8.1 Applies coding technique to implement the solution.
	2.8.2 Analyze and interpret the results using tools.2.8.3 Identify the limitations of the solution and sources/causes.
	2.8.4 Arrive at conclusions with respect to the objectives

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

Competency	Indicators
3.5 Demonstrate an ability to define a complex	3.5.1 Able to define a precise problem statement with objectives and scope
problem in engineering terms.	3.5.2 Able to identify and document system
	requirements where the algorithmic approaches are used.
3.6 Demonstrate an ability to generate a diverse set	3.6.1 Able to explore and design alternative algorithms to
	3.6.2 Able to produce a variety of potential design solutions suited to meet the problem statement.
	3.6.3 Identify suitable test cases for evaluation of alternate design solutions.
3.7 Demonstrate an ability to select optimal design	3.7.1 Able to perform systematic evaluation of the
scheme for further development	degree to which several design concepts meet the criteria
	3.7.2 Consult with domain experts and stakeholders
	to select candidate engineering design solution for

	further development
	3.7.3 Designing systems for healthcare, cyber security and safety
	3.7.4 Employ knowledge representation, search, inference, and reasoning abilities
3.8 Demonstrate an ability to advance an engineering design to defined end state	 3.8.1 Able to refine an algorithm design into a detailed design within the existing constraints 3.8.2 Able to implement and integrate the modules. 3.8.3 Able to verify the functionalities and validate the design by applying on real time applications.

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Unit Learning Outcome (ULO)	со	BLL	PI
			addressed
Analyze the asymptotic performance of algorithms and be familiar with basics	1&2	2.4	2.5.2
of algorithms and data structures			2.6.3
Demonstrate and compare efficiencies of different algorithmic strategies.	1&2	3,5	2.6.4
Design different algorithms for finding the solutions to some complex problems.	3	5	2.8.3

Unit Learning Outcomes (ULO):

Apply important algorithmic design paradigms and methods of analysis	4	3	3.6.2
Synthesize efficient algorithms in common engineering design situations.	5	5	3.5.5

Course Content:

Hours Required	Topic to be covered	Mode	f Delivery
01	Introduction: Notion of Algorithm		
01	Fundamentals of Algorithmic Problem Solving	1	
01	Important Problem Types, Fundamental Data Structures.	i.	Chalk and talk in classroom
01	Fundamentals of the Analysis of Algorithm Efficiency: Analysis Framework, Asymptotic Notations	ii. iii.	Presentation Lecture combined with discussions
01	Basic Efficiency Classes,	iv.	Tutorial and Assignments
01	Mathematical Analysis of Non-recursive. Example	v. vi.	Demonstration Group Assignment
01	Recursive Algorithms, Examples, Fibonacci Numbers.		
01	Brute Force: Selection Sort and Bubble Sort,]	
01	Sequential Search and Brute-Force String Matching,	1	
01	Exhaustive Search, Examples.	1	
01	Implementation of Algorithms	1	
01	Implementation of Algorithms	1	
01	Divide and Conquer: Strategy, Example	i.	Chalk and talk in classroom
01	Mergesort: Algorithm, Example, Analysis	ii.	Presentation
01	Ouicksort: Algorithm, Example, Analysis	iii.	Lecture combined with
01	Binary Search, Binary tree traversals and related properties.	iv.	discussions Tutorial and Assignments
01	Multiplication of large integers and Stressen's Matrix Multiplication.	v. vi.	Demonstration Group Assignment
01	Decrease and Conquer: Insertion Sort	-	i C
01	Depth First Search	-	
01	Breadth First Search	-	
01	Topological Sorting	-	
01	Algorithms for Generating Combinatorial Objects	-	
01	Implementation of Algorithms	-	
01	Transform and Conquer: Presorting		
01	Balanced Search Trees	-	
01	Heans and Heansort	i.	Chalk and talk in classroom
01	Problem Reduction	ii.	Presentation
01	Space and Time Tradeoffs: Sorting by Counting	iii.	Lecture combined with
01	String Matching Algorithms: Horsecol String Matching	iv	Tutorial and Assignments
01	Bovre Moor String Matching Algorithms	v.	Demonstration
01	Hashing B Trees	vi.	Group Assignment
01	Dynamia Braggamming: Computing a Dinamial Coefficient		
01	Worshall's and Floyd's Algorithms	4	
01	waishali 5 aliu 110yu 5 Algoliullis,	4	
01	The Knapseek Broblem and Memory Experience	4	
01	Cready Taabaiques Drim's Algorithm	<u>.</u>	Chally and tally in alarmy and
01	Knyskal's Algorithm	- I. ::	Unaik and talk in classroom Procentation
01	Niuskai š Aigoriumii,		Lacture combined with
01	Dijksua S Algonum,		discussions
01	Hullman Trees.		uiscussions Tutorial and Assignments
01	Implementation of Algorithms		Demonstration
01	Limitations of Algorithm Power: Lower-	v.	Group Assignment
01	Bound Arguments,	VI.	Group Assignment
01	Decision Trees, Problems	-	
01	Coping with the Limitations of Algorithm Power:		

01	Backtracking: n-Queens Problem,					
01	Knapsack Problem, Sum of Subsets					
01	Branch-and-Bound: n-Queens Problem,					
01	Travelling Salesman Problem, Knapsack					
	Problem					

Review Questions:

Review Questions	ULO	BLL	PI addressed		
Explain the concept of algo	orithms. Illustrate with exar	nples how same problem can	be 1	2,3	1.7.1
solved using different algo	orithms and same algorithm	ns can be represented in seve	eral		
different ways.					
Explain Knapsack probler	m with all conditions and	Apply dynamic programm	ing		
strategy to find solution for	knapsack problem for the f	ollowing instance.			
Item	Weight	Profit			
1	7	42	0.4		
2	3	12	04	5	2.8.2
3	4	40			
4	5	25			
Maximum capacity of knap					
Write an algorithm for dept	ing 1,3,4	3,4	2.7.1		
an example to construct D	its				
efficiency.					
-					

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	20	20
CIE-II	20	20
Assignments/ Quizzes/	10	10
Case Study/ Course Project/		
Term Paper/Field Work		
SEE	100	50
Total	150	100

Details of Assignment:

Assignment	Marks (10)	СО	PI	СА	РО
Assignment 1	Marks- 5	1,2			2
Assignment 2	Marks - 5	3,4,5			3

BASAVESHWAR ENGINEERING COLLEGE(AUTONOMOUS), BAGALKOT

MODEL COURSEPLAN

Title of Course	:	Artificial Intelligence and Robotics	Course Code	:	UCS531N/UCS632N
Credits	:	3	Contact Hours/ Week	:	3
Total Hours	:	40	Tutorial Hours	:	0
CIE Marks	:	50	SEE Marks	:	100
Semester	:	5 th or 6 th	Year	:	2023-24

Prerequisites:

Basic knowledge of Algorithms and Data Structures

Course Objectives:

	The Course objectives are:
1	To present the basic principles of AI toward problem solving, knowledge representation and robotics.
2	Investigate applications of AI techniques in intelligent agents, expert systems, artificial neural networks and other machine learning models.
3	Explore the current scope, potential, limitations, and implications of intelligent systems.
4	Develop abilities to apply, build and modify decision models to solve real problems
5	Design and program small expert systems and robotic applications.

Course Outcomes:

	At the end of the course the student should be able to:
1	Identify problems that are amenable to solution by AI methods and identify appropriate
	methods to solve a given problem.
2	Illustrate the representation of knowledge and inference using logic.
3	Analyze various control strategies and solve problems using search techniques
4	Apply the learnt concepts to solve simple problems of AI and robotics.
5	Demonstrate the knowledge of expert systems and robotic programming.

ARTIFICIALINTELLIGENCEANDROBOTICS						
Course Code	UCS632N	CIEMarks	50			
TeachingHours /Week(L:T:P)	(3:0:0)	SEEMarks	50			
Credits	03	Hours	40			
Courseobjectives:						
 To have insight into the fund variouspeculiarsearchstrateg . To have proficiency in deve unconventionally withoptim 	lamentals of Art iesforAI,Progra loping the techn ality.	ificial Intelligence (AI) and Robotics that in mmingtheRobotsandControllingAutonomou iques to solve real world problems	cludes the sRobotsetc			
	UNIT-	I (10 hours)				
 Introduction AI: The AIProblems, Underlyinga 1.5 from Rich and Knight) Problems: Problems paces and 	ssumptions,AIte	chnique,Levelofthemodel,Criteriaforsuccess	to s (1.1to emcharacter			
istics,Productionsystemcharao 2.6fromRich andKnight)	cteristics,Issuesi	nthedesignofsearchproblems, additionalprobl	ems(2.1 to			
Revised Bloom'sTaxonomyLevel	L ₁ -Rem	embering,L2– Understanding				
	UNIT	C-II(10hours)				
3. Search and control Strategi annealing(3.1, 3.2fromRich and	es: Introduction Knight)	, Generate and Test, Hill Climbing, Simula	ted			
4. Expert systems Architectur System Architectures, Dealing 15.6from Dan W. Patterson)	es: Introduction with Uncertaint	, Rule-Based System Architectures, Nonp y, Knowledge Acquisition and Validation	roduction (15.1 to			
Revised Bloom'sTaxonomyLevel	L ₁ –Reme	mbering,L2–Understanding,L3–Applying,L4–Ana	lysing			
	UNIT	-III(10hours)				
5. Introduction to Robotics:T EndEffectors, Controllers,Scenar	heSevenCriteria rio, Givingthe ro	ofDefiningaRobot,RobotCategories,Sensors botinstructions. (Chapter 1fromCameron Hug	,Actuators, ghes)			
6. RobotVocabulariesandRSVP: AdditionalEffort,Actions,TheAutonomousRobot'sROLLModel,RS VP (Robot ScenarioVisual Planning):MappingtheScenario, PseudocodeandFlowchartingRSVP. (Chapter 2 and 3fromCameron Hughes)						
Revised Bloom'sTaxonomyLevel	L ₁ –Reme	mbering,L2–Understanding,L3–Applying				
UNIT-IV(10 hours)						
7. ActualCapabilitiesofRobot:TheRealityCheckfortheMicrocontroller,SensorRealityCheck,Determine YourRobot'sSensor,Limitations,ActuatorsEnd-EffectorsRealityCheck. (Chapter 4fromCameron Hughes)						
8. Sensors:TypesofSensors,SensorInterfacingwithMicrocontrollers,AttributesofSensors,Sensor Calibration. (Chapter 5fromCameron Hughes)						
Revised Bloom'sTaxonomyLevel	L ₁ –Reme Evaluati	mbering,L2–Understanding,L3–Applying,L4–Ana ng,	lysing,L5–			

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO1	PO2	PO3	PO4	PO5	PO6	РО 7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2	PSO3
No	Programme Outcomes Course Outcomes															
The	students will be able to:															
1	Identify problems that are amenable to solution by AI methods and identify appropriate methods to solve a given problem.	2	2	3	2									3	1	2
2	Illustrate the representation of knowledge and inference using logic.	3	2		3										2	
3	Analyze various control strategies and solve problems using search techniques		3	3	3		2							3		3
4	Apply the learnt concepts to solve simple problems of AI and robotics.		2	1	3	3									2	
5	Demonstrate the knowledge of expert systems and Robotics.				3								3		3	2

Competencies Addressed in the course and Corresponding Performance Indicators

Programme Outcome: Any of 1 to 12 PO's:

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

Competency	Indicators
1. Identify complex engineering	i. Students should be able to identify
problem	problemsthat require AI solutions
	ii. Identify the domains where Expert Systems
	may be developed
2. Design a system and identify	iii. Analysis of the problem, represent the
system requirements	knowledge
	iv. Encode the knowledge
	v. Augment the knowledge
	vi. Analyze the complexity of the solution
3. Consideration for public	vii. Designing systems for healthcare,
health, safety	cybersecurity and safety
	viii. Employ knowledge representation, search,
	inference, and reasoning abilities
4. Cultural, societal and	ix. Applying the AI for societal needs and
environmental	environmental protection, especially the
considerations	problems like conservation of water,
	conservation of forest, healthcare,
	telemonitoring, ensuring social and ethical
	responsibilities, like proctored conduction of
	examinations

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Unit Learning Outcomes (ULO):

Unit Learning Outcome (ULO)	СО	BLL	PI
			address ed
Identify problems that are amenable to solution by AI methods	1,2	1,2,4	i, ii, iii, iv v
problem.Illustrate the representation of knowledge and			and vi
inference using logic.			
Analyze various control strategies and solve problems using search techniques	3	3,5	vii
Apply the learnt concepts to solve simple problems of AI and robotics.	4	3,4	viii
Demonstrate the knowledge of expert systems and robotics.	5	2, 6	ix

Course Content:

Hours	Topic to be covered	N	lode of Delivery
Required			
01	What is AI? AI technique, Criteria for success	i.	Chalk and talk in
01	The AI Problems		classroom
01	Underlying assumptions	ii.	Lecture combined
01	Level of the model		with discussions
01	Problems, problem spaces and search Problem as a	iii.	Assignments
	state space search	iv.	Group Assignment
01	Production systems,		
01	Problem characteristics,		
01	Production system characteristics,		
01	Issues in the design of search problems,		
01	Additional problems		
01	Search and control strategies Introduction	i.	Lecture combined
01	preliminary concepts,		with discussions
01	examples of search problems, uniformed or blind	ii.	Tutorial
	search,	iii.	Assignments

01	Informed search, Searching And-Or graphs	iv.	Group Assignment
01	Expert system architectures Introduction,	v.	Seminars,
01	Rule-based system architectures, Non-production		Presentations
	system architectures		
01	Dealing with uncertainty, Knowledge acquisition		
	and validation		
01	Knowledge system building tools		
01	Introduction to Robotics		
01	TheSevenCriteriaofDefiningaRobot,	_	
01	Robot	i.	Lecture combined
01	Sensors,Actuators,	_	with discussions
01	Categories, End Effectors, Controllers, Scenario,	ii.	Tutorial
01	Givingthe robotinstructions.	iii.	Demonstration
01	RobotVocabulariesandRSVP	- IV.	Group Assignment
01	AdditionalEffort,	- v.	Dresentations
01	Actions, The Autonomous Robot's ROLL Model	vi	Group Discussion
01	RSVP (Robot ScenarioVisual Planning)		
01	MappingtheScenario		
01	PseudocodeandFlowchartingRSVP.		
01	ActualCapabilitiesofRobotSensors		
01	TheRealityCheckfortheMicrocontroller,		
01	SensorRealityCheck	i.	Lecture combined
01	DetermineYourRobot'sSensor,		with discussions
01	Limitations,	ii.	Assignments
01	ActuatorsEnd-EffectorsRealityCheck.	iii.	Demonstration
01	TypesofSensors,	iv.	Group Assignment
01	SensorInterfacingwithMicrocontrollers,	v.	Seminars,
01	AttributesofSensors,	7	Presentations
01	Sensor Calibration	7	
01	Revision	7	
01	Presentations		

Review Questions:

Students should be able to identify problems that require AI solut i. Identify the domains where Expert Systems may be developed	Students should be able to identify problems that require AI solutions						
ii. Analysis of the problem, represent the knowledge							
iii. Encode the knowledge							
iv. Augment the knowledge							
v. Analyze the complexity of the solution							
vi. Designing systems for healthcare, security, and simple applic intelligence.	cations	that req	uire				
vii. Employ knowledge representation, search, inference, and re	asoning	g abilitie	S				
viii. Applying the AI for societal needs and environmental protec	tion, es	pecially	the problems				
like conservation of water, conservation of forest, healthcare	e, telem	nonitorin	ig, ensuring				
social and ethical responsibilities, like proctored conduction	of exan	nination	S				
Review Questions	ULO	BLL	PI .				
			addressed				
Define Artificial Intelligence. List out the task domains of Al.		1	I				
What is the order of learning of these tasks?							
Discuss the algorithm which defines the Tic-Tac-Toe game in	1	2	i				
nine turns. Also comment on the strategy.							
Discuss the Turing Test as a criterion for success.12ii							
State the Water Jug problem. Discuss the rules. Give a possible	4	6	vii				
solution to the problem.							
Compare and contrast breadth-first, depth-first and heuristic 1 3							
search techniques.							
Explain various characteristics of problems with an example	1	2	i				
each.							
Discuss representations and mappings of knowledge with a neat diagram.	1	2	iv				
Discuss the types of knowledge representation, with an example each.	1	2	v				
Write the algorithm for Simple Hill Climbing technique.	2	5	viii				
Compare and Contrast Hill climbing techniques.							
Demonstrate the impact of heuristic function by taking the 2 3 iii							
blocks-world problem.							
Discuss Simulating annealing with examples.	4	6	viii				
With a neat block diagram explain the architecture of a rule-based Expert System.	1	4	iv				

Compare the architecture of an expert system with human	2	4	iv
expert system.			
A robot can replace a human being. Justify.	2	2	х
Discuss the architecture of a simple robot.	3	5	vi
What are the seven criteria to define a robot.	3	2	х
What is the role of sensors in robots.	4	2	iii
Discuss the significance of the controller and end-effectors	3	2	viii
in a robot.			
In the birthday party, design RSVP for the robot.	4	4	vii
Discuss the calibration of sensors used in robots.	3	5	х

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	20	20
CIE-II	20	20
Assignments/ Quizzes/Case Study/ Course Project/Term	10	10
Paper/Field Work		
SEE	50	50
Total	100	100

Details of Assignment:

Assignment	Marks (10)	СО	PI	СА	РО
Assignment 1: Solution to AI problem, For e.g., Water Jug problem, Cryptarithmeticproblem	2	1	i, ii	1	1,2
Assignment 2: Seminar on a given topicrelated to Unit II	2	2	lii, iv	2	3,4
Assignment 3: Preparing a Poster of a given topic, related to Unit III	2	3	v, vi	2	5
Assignment 4: Visiting the Robotics lab of our college and prepare a report.	2	4	vii, viii	3	6
Assignment 5:Design a small robot for the purpose of cleaning the floor, pick and place, detection of obstacles.	2	5	ix	4	12

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOT

Model CoursePlan

Title of Course	:	Computer Networks	Course Code	:	21UCS502C
Credits	:	4	Contact Hours/ Week	:	4
Total Hours	:	52	Tutorial Hours	:	0
CIE Marks	:	50	SEE Marks	:	100
Semester	:	5	Year	:	2023-24

Prerequisites:

Not Required

Course Objectives:

	The Course objectives are:
1	Have insight into the basic taxonomy and terminology of the computer networking area.
2	Develop proficiency in specific areas of networking such as the design and maintenance of individual networks.

Course Outcomes:

	At the end of the course the student should be able to:
1	Explain the fundamental concepts of Computer Networks.
2	Analyze different network protocols.
3	Apply techniques for efficient handling of Computer Networks.
4	Formulate Routing and Congestion Control Algorithms.
5	Implement Application Layer protocols.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

Course Outcomes		Programme Outcomes (POs)										Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	1	2	-	-	-	-	-	-	-	-	-	-	2	-	-
CO2	1	3	1	2	1	-	-	-	-	-	-	-	3	-	-
CO3	2	2	3	1	-	-	1	2	-	-	-	-	1	2	3
CO4	1	3	1	3	1	-	-	-	-	-	-	-	3	-	-
CO5	1	2	3	2	-	3	1	1	-	-	-	-	1	2	2

Competencies Addressed in the course and Corresponding Performance Indicators

Programme Outcome: Any of 1 to 12 PO's:

PO2. **Problem Analysis**: Identify, formulate, review research literature, and analyze complex Engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and Engineering sciences.

Competency	Indicators
1. Demonstrate an ability to	i. Students should be able to identify
identify and formulate complex	problems that require networking
engineering problem.	solutions.
	ii. Identify networking concepts that applies
	to a given problem.
2. Demonstrate an ability to	iii. Identify functions and features of layers
formulate a solution plan and	of network models.
methodology for an engineering	iv. Compare and contrast alternative
problem	mechanisms to select the best method.
3. Demonstrate an ability to	v. Able to apply computer networking
execute a solution process	principles to routing with required
and analyze results	applicability and performance.
	vi. Analyze the features and operations of
	various protocols.
	vii. Identify the limitations of the various
	routing strategies.

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Unit Learning Outcomes (ULO):

Unit Learning Outcome (ULO)	со	BLL	PI
			addressed
Understand and Contrast the concept of Signals, OSI & TCP/IP	1,2	1,2	i, ii, iii
reference models and <i>discuss</i> the functionalities of each layer in			
these models.			
Discuss and Analyse various addressing schemes, flow control	1,2	4	iv, v
and error control mechanisms and apply them using standard			
data link layer protocols			
Apply various routing algorithms to find shortest paths for	4	3	v, vii
packet delivery.			
Analyze the features and operations of various transport and	4,5	4	v, vi, vii
application layer protocols.			

Course Content:

Hours	Topic to be covered	Mode of Delivery		
Required				
01	Introduction: Data Communications: Components,	i.	Chalk and talk in	
	Data representations, Data flow.		classroom	
01	Networks: Distributed Processing	11.	Lecture combined	
01	Network Criteria and Physical structures		With discussions	
01	Categories of Networks [LAN, WAN, MAN]	III. i. /	Assignments	
01	Protocols and Standards, Key elements.	IV.	Group Assignment	
01	Network Models: The OSI Model: layered			
	architecture			
01	Peer to peer processes, and encapsulation, Layers			
	in the OSI Model : [Brief description of all seven			
	layers]			
01	TCP / IP Protocol Suite			
01	Addressing: physical, logical and port addresses			
	and specific address			
01	Physical Layer: Transmission Impairment,			
	Transmission Modes.			
01	Data Link Layer: Introduction, Block Coding	i.	Lecture combined	
02	Detection and Correction: Cyclic codes: Checksum.		with discussions	
04	Data link control: Framing, Flow and Error control	ii.	Tutorial	
02	Protocols: Noiseless channels: Noisy channels.	iii.	Assignments	
02	Channelization: FDMA, TDMA, CDMA	iv.	Group Assignment	
02	Connecting Devices: Passive Hubs, Repeaters,	۷.	Seminars,	
	Active Hubs, Bridges, Routers, Gateways. Virtual		Presentations	
	LANs.			
02	Network Layer: Logical Addressing: IPv4	i.	Lecture combined	
	Addresses: Address Space, Notation		with discussions	
01	Classful Addressing, Classless Addressing	ii. 	Tutorial	
01	IPv6 Addresses: Structure	III.	Demonstration	
01	Network Layer : Internet Protocol: IPv4 Datagram	IV.	Group Assignment	
01	IPv6, Transition from IPv4 to IPv6	۷.	Seminars,	
01	Network Layer: Address Mapping	:	Presentations	
01	Network Layer: Address Mapping	vi.	Group Discussion	
01	Network Laver: Delivery Forwarding & Bouting:			
01	Delivery			
01	Forwarding: Routing Table			
01	Inicast Routing Protocols: Distance Vector Routing			
05	Link State Routing, Path Vector Routing			
01	Transport Laver: Process to Process Delivery	i	Lecture combined	
02	IIDP: TCP: TCP services TCP features Segment	1.	with discussions	
02	A TCP connection SCTP : SCTP services SCTP	ii	Assignments	
02	features. Packet format. An SCTP association	jii.	Demonstration	

01	Congestion Control and Quality of Service	iv.	Group Assignment
02	Congestion control: Open loop congestion control and closed loop congestion control. Quality of Service.	v.	Seminars, Presentations
02	Application Layer: Domain Name System, Name Space, Domain Name Space, DNS In The Internet, Resolution. Registrars		
01	Remote Logging, Electronic Mail and File Transfer: Remote logging: Telnet		
02	Electronic mail: Architecture, User Agent, MIME, SMTP POP and IMAP. File Transfer: FTP.		
01	Transport Layer: Process to Process Delivery		

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	40	20
CIE-II	40	20
Assignments/ Quizzes/Case Study/ Course Project/Term	10	10
Paper/Field Work		
SEE	100	50
Total	190	100

Details of Assignment:

Assignment	Marks (10)	СО	PI	СА	РО
Assignment 1: Quizzes	5	1	i, ii	1	1,2
Assignment 2: Questions on a given topic.	5	1,2,3,4,5	lii, iv	2	3,4

BASAVESHWAR ENGINEERING COLLEGE(AUTONOMOUS), BAGALKOT

COURSEPLAN

Title of Course	:	Python Application Programming	Course Code	:	UCS065E
Credits	:	03	Contact Hours/ Week	:	03
Total Hours	:	40	Tutorial Hours	:	-
CIE Marks	:	50	SEE Marks	:	100
Semester	:	v	Year	:	2023-2024

Prerequisites:

Programming language

Course Objectives:

	The Course objectives are:
1	Have insight into programming skills in python
2	Have proficiency in designing database applications and network programming

Course Outcomes:

	At the end of the course the student should be able to:
1	Explain syntax and semantics of Python programming structure
2	Demonstrate the use of strings, files, lists, dictionaries and tuples in simple applications
3	Write simple applications using regular expressions, multiple threads
4	Build database applications with GUI
5	Analyze the given problem and select appropriate data types and modules to develop the solution

		PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2	PSO3
No	Programme Outcomes Course Outcomes															
The	students will be able to:															
1	Explain syntax and semantics of Python programming structure	1	2	2		1								2		
2	Demonstrate the use of strings, files, lists, dictionaries and tuples in simple applications	2	3	3		1								3	1	1
3	Write simple applications using regular expressions, multiple threads	3	3	3		1								3	1	1
4	Build database applications with GUI	3	3	3		1								3	1	3
5	Analyze the given problem and select appropriate data types and modules to develop the solution.	2	3	1		1								3	1	1

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

Competencies Addressed in the course and Corresponding Performance Indicators

Programme Outcome: Any of 1 to 12 PO's:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

Competency	Indicators
1.1 Demonstrate competence in engineeringfundamentals	i. Apply engineering fundamentals
1.2 Demonstrate competence in specialized engineering knowledgetotheprogram	ii.Apply theory and principles of computer science and engineering to solve an engineering problem
2.1 Demonstrate an ability to identify and formulate complex engineering problem	 iii. Evaluate problem statements and identifiesobjectives iv.Identify processes/modules/algorithms of a computer-based system and parameters to solve aproblem
2.2 Demonstrate an ability to formulate a solution plan and methodology for an engineering problem	v.Compareandcontrastalternativesolution/methodstoselectthebestmethods
2.3 Demonstrate an ability to execute a solution process and analyze results	vi.Appliesengineeringmathematicstoimplementthesolution.
3.1 Demonstrate an ability to define a complex/ open-ended problem in engineeringterms	vii. Ableto define a precise problem statement with objectives and scope.
5.1Demonstrate an ability to identify/create modern engineering tools, techniques andresources	viii.Adapt tools and techniques to solve engineeringproblems

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Unit Learning Outcomes (ULO):

Unit Learning Outcome (ULO)	со	BLL	PI addressed
Demonstrate the basic constructs of python	1,2,5	1,2,3,4	i,ii,iii,iv
programming language			
Analyze the given problem and select appropriate data	1,2,5	1,2,3,4,5	lii,iv,v,vi,vii,viii
types and modules to develop the solution.			
Write programs using regular expressions and network	1,3,5	1,2,3,4,5	lii,iv,v,vi,vii,viii
programming			
Build applications using thread and database and GUI	1,4,5	2,3,4,5,6	lii,iv,v,vi,vii,viii
concepts			

Course Content:

Hours	Topic to be covered	Mode of Delivery
Required		
01	Datatypes in python: comments in python,	Chalk and talk in classroom/Lecture
	Docstrings, how python sees variables,	with a quiz/ Assignments/
	Datatypes in python	Demonstration/Group Discussion
01	Sequences in python, Literals in python,	
	Determing the data type of a variable,	
	Identifiers and reserved words, Naming	
	conventions in python	
01	Operators in Python: Operator, operator	
	precedence and associativity, Mathematical	
	functions	
01	Input and Output: Output statements, Input	
	statements, Command Line arguments	
01	Control Statements	
01	Control Statements	
01	Control Statements	
01	Strings and Characters	
01	Strings and Characters	
01	Strings and Characters	
01	Functions: Defining a function, calling a	Chalk and talk in classroom/Lecture
	function, Returning Results from a function,	with a quiz/ Assignments/
	Returning multiple values from a function	Demonstration/Group Discussion
01	Formal and actual arguments, local and	
	global variables, passing a group of	
	elements to a function, recursive functions,	
01	Lists and tunlos: lists	
01	Lists and tuples: lists	
01		
01	Dictionarios	
01	Dictionaries	
01	Excentions: excentions, excention handling	
01	types of exceptions, user defined exception	
01	Files in python: files types of files in	
01	python opening a file closing a file	
01	working with text files containing strings	
01	working with hinary files nickle in python	
	working with binary mes, pieke in python	
01	Regular Expressions in python	Chalk and talk in classroom/Lecture
		with a guiz/ Assignments/
01	Regular Expressions in python	Demonstration/Group Discussion
_	-0	
01	Regular Expressions in python	
01	Object Oriented Programming: Classes and	
	Objects, Creating Classes in Python, Creating	
	Objects in Python	

01	The Constructor Method, Classes with Multiple Objects	
01	Class Attributes versus Data Attributes	
01	Encapsulation, Inheritance, The	
	Polymorphism	
01	Networking in python	
01	Networking in python	
01	Networking in python	
01	Threads	Chalk and talk in classroom/Lecture
01	Threads	with a quiz/ Assignments/
01	Threads	Demonstration/Group Discussion
01	Graphical user Interfaces	
01	How to work with Database: How to use	
	SQLite Manager to work with a database	
01	How to use python to work with database	
01	How to use python to work with database	

Review Questions:

Review Questions	ULO	BLL	PI addressed
Explain the following basic data types of python	1	L2	i
i) int			
ii) bool			
iii) complex			
Write the output of the following print statements,	1	L3	ii
i. print(10//3)			
ii. print ('hello' and 'hi')			
iii. print (oct(12))			
iv. print('hello woRLD'.title())			
Write a syntax of the following	1	L2	i
if –elif-else ii) for with range function			
Write a python program to check whether given number is prime or not	1	L4	iii,iv,viii
Define tuple in python and state the difference between tuple and	2	L1	v
list			
Write a python program to convert a list of characters into a string	1	L4	iii,iv
object.			
Explain the use of following member functions of tuple class with	2	L2	iii
example,			

i)index ii) count			
Write a python program to create a dictionary that contains each	2	L6	lii,iv,viii
vowel as keys and the number of occurrences of each			
vowels in a given string as values.			
Write syntax for defining user defined function in python	2	L2	iii
Write a python program to create user defined function FIND ()	2	L3	iii,iv,viii
which accepts the string as argument and returns the minimum and			
maximum letter in string and also length of the string. Find the			
length of string without using built in function. Print the returned			
values on console.			
List and explain the different file opening modes.	2	L2	iii
Write a python program to count number of lines in a given file and	2	L4	iii,iv,viii
also print each line stored in a file on console.			
Define regular expression. Illustrate with example uses of the	3	L5	lii,iv,vi
following characters in regular expression i) d ii) * iii) {m} iv) A v)			
[]			
Write a python program to create a class Rectangle with instance	3	L3	iii,iv,viii
variable width and height. Use constructor to initialize instance			
variables and define method area () to find area of rectangle			
Develop a Python program to check the validity of a password given	3	L6	lii,iv,vi,viii
by the user. The Password should satisfy the following criteria: 1.			
Contain at least 1 letter between a and z 2. Contain at least 1			
number between 0 and 9 3. Contain at least 1 letter between A and			
Z 4. Contain at least 1 character from \$, #, @ 5. Minimum length of			
password: 6 6. Maximum length of password: 12			
Define socket? Write a python program that makes a connection to	3	L3	lii,iv,v,vi,viii
a web server and follows the rules of HTTP protocol to request a			
plain test document and display what server sends back.			
Write python programs to create two threads that perform	4	L5	lii,iv,v,vi,viii
withdraw and deposit operation on same account. In case a race			
condition occurs in above situation then modify a program to			
synchronize the threads.			
Define cursor? Explain connect, execute and close command of	4	L3	lii,iv
databases with suitable example.			

Write a python a code to establish a database connection to	4	L4	lii,iv,v,vi,vii,viii
'Empdb' and display the gross salary paid to the employees working			
in the 'Quality Control' department. Assume the employee table			
has already been created and exists in 'Empdb'. The fields of			
employee table are (EMPID, deptName, GrossSalary).			
Define TKinter and list the steps that are required to set GUI up and	4	L1	iii
running			
Design GUI to calculate a Age of a person. Input date of birth using	4	L6	lii,iv,v,vi,vii,viii
Entry widget and use pushbutton to calculate age. Print the			
calculated age using label widget.			

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	40	20
CIE-II	40	20
Assignments/ Quizzes/	10	10
Case Study/ Course Project/		
Term Paper/Field Work		
SEE	100	50
Total	190	100

Details of Assignment:

Assignment	Marks (10)	СО	PI	СА	РО
Development of web application for real time problem using GUI and SQLite in Team	05	4	iii,iv,v,vi,vii,viii		2,3

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOT

COURSE PLAN

22UCS503C		Credits: 03
L:T:P - 2 : 0: 2	Web Technologies	CIE Marks: 50
Total Hours/Week: 40		SEE Marks: 50

Prerequisites: Java, DBMS

Course Objectives:

SI No	The Course objectives are:
1	Have insight into World Wide, HTML/XHTML, Java Script, PHP.
2	Have proficiency in design of web applications which will work with database.

Course Outcomes:

SI No	At the end of the course the student should be able to:
1.	Explain the basics of World Wide Web.
2.	Implement web concepts using different tools like HTML/CSS/JavaScript PHP.
3.	Design dynamic web pages using JavaScript.
4.	Design server-side pages using PHP.
5.	Develop web application for real world problem.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
No	Programme Outcomes Course Outcomes															
The stu	dents will be able to:															
1.	Explain the basics of World	1														
	Wide Web.															
2.	Implement web concepts		3	3		2								1		
	using different tools like															
	HTML/CSS/JavaScript															
	РНР.															
3.	Design dynamic web pages		3	3		2								1		
	using JavaScript.															
4.	Design server-side pages		3	3		2								2		
	using PHP.															

5.	Develop web application for	3	3	2				2	
	real world problem.								

Competencies Addressed in the course and Corresponding Performance Indicators

Programme Outcome: Any of 1 to 12 PO's:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PO NO	Competency	Indicators
1	1.3 Demonstrate competence in engineering fundamentals.	1.6.1 Apply fundamental engineering concepts to solve engineering problems.
2	2.5 Demonstrate an ability to identify and formulate complex engineering problem	 2.5.1 Evaluate problem statements and identifies objectives 2.5.2 Identify modules/algorithms of a computer based system and parameters to solve a problem
	2.7 Demonstrate an ability to formulate and interpret a model	 2.7.1 Able to apply computer engineering principles to formulate modules of a system with required applicability and performance. 2.7.2 Identify design constraints for required performance criteria.
	2.8 Demonstrate an ability to execute a solution process and analyze results	2.8.3 Identify the limitations of the Solution and sources/causes.
3	3.5 Demonstrate an ability to define a complex/ open- ended problem in engineering terms	3.5.1 Able to define a precise problem statement with objectives and scope
	3.8 Demonstrate an ability to advance an engineering design to defined end state	3.8.3 Able to verify the functionalities and validate the design.

5	5.4 Demonstrate an ability to identify/create modern Engineering tools, techniques and resources.	 5.4.1 Identify modern engineering tools, techniques and resources for engineering activities 5.4.2 Create/adapt/modify/extend tools and techniques to solve engineering problems
8	8.3 Demonstrate an ability to recognize ethical dilemmas.	8.3.1 Identify situations of unethical professional
		conduct and propose ethical Alternatives.
12	12.5 Demonstrate an ability to identify changing trends in engineering knowledge and Practice.	12.5.1.Identify historic points of technological advance in engineering that required practitioners to seek education in order to stay current

Unit Learning Outcomes (ULO):

Unit Learning Outcome (ULO)	CO	BLL	PI
			addressed
UNIT-I	1	2,3	1.6.1
1. Understand the basis serves of such an ensure in a	,2,3		2.5.1
1. Understand the basic concepts of web programming.			2.5.2
2. Create web pages using HTML tags			2.7.1
3. Write HTML code for given specification.			2.8.3
UNIT-II	1 &	2,3,4	1.6.1
	2		2.5.1
1. Create web pages using CSS.			2.5.2
2. Understand the concepts of JavaScript.			2.8.3
			3.5.1
3. Write simple Java Scripts for given problem.			3.8.3
UNIT-III	1,3,4	2,3,5	1.6.1
			2.5.1
•			2.5.2
1. Understand the concepts of dynamic documents with			2.8.3
IavaScript			3.5.1
			3.8.3
2. Create web pages for given problem to validate the			5.4.1
input using JavaScript			5.4.2
2. Consta home is such as a second bar Garint			8.3.1
3. Create dynamic web pages using JavaScript.			
UNIT-IV	1,3,4	2,3,5	1.6.1
			2.5.1
1. Understand the concepts of PHP			2.5.2
2. Develop web applications using PHP and SOL			2.8.3
2. 2 thosp we approaches abing the and oge			3.5.1
			3.8.3
			5.4.1
			5.4.2
			8.3.1

Course Content:

Hours	Topic to be covered	Mode of Delivery
01	Fundamentals of Web	1. Chalk and talk
	Browsers and Web Servers:	2. Lecture
01	URLs; MIME; HTTP;	combined with
01	The Web Programmers Toolbox.	discussions of
01	XHTML: Origins and evolution of HTML and XHTML; Basic syntax; Standard XHTML document	programs 3. Group Assignment
01	structure Basic text markup. XHTML : Images; Hypertext Links; Lists; Tables;	
01	Forms; Frames; Syntactic differences between HTML and XHTML.	-
01	CSS: Introduction; Levels of style sheets; Style specification formats; Selector forms;	1. Lecture combined with discussions
01	Property value forms; CSS: Font properties;	2. Programs
01	List properties; Color; Alignment of text; The Box model; Background images; The and <div> tags; Conflict resolution.</div>	3. Demonstration 4. Group Assignment
01	JAVASCRIPT: Overview of Javascript; Object orientation and Javascript; General syntactic characteristics; Primitives, operations, and expressions;	
01	Screen output and keyboard input; Control statements; Object creation and modification; Arrays; Functions; Constructor;	
01	Pattern matching using regular expressions; Errors in scripts; Examples.	
01	JAVASCRIPT AND HTML DOCUMENTS: The Javascript execution environment; The Document Object Model; Element access in Javascript;	1. Lecture combined with discussions 2. Programs
01	Events and event handling: Handling events from the Body elements,	3. Demonstration 4. Group
01	Button elements, Text box and Password elements;	Assignment
01	DYNAMIC DOCUMENTS WITH JAVASCRIPT: Introduction to dynamic documents: Positioning elements:	
01	Moving elements; Element visibility;	-

01	Changing colors and fonts; Dynamic content; Stacking elements;	
01	Introduction to PHP:Origins and Uses of PHP, Overview of PHP, General Syntactic Characteristics, Primitives, Operations, and Expressions, Output,	 Lecture combined with discussions Programs Demonstration
01	Control Statements	4. Group
01	Arrays, Functions, Pattern Matching, Form Handling,	Assignment
01	Cookies, Session Tracking.	
01	Database Access through the Web: Database Access with PHP	
01	Database Access through the Web: Database Access with PHP	

Review Questions:

Review Questions	ULO	BLL	PI addres sed
Explian the following tags with example.	1	2	1.6.1
i. <blockqoute> ii. <pre> iii. <select></select></pre></blockqoute>			
Create HTML document that describes nested ordered list of diseases. The outer list must have names of two disease.Inside each of disease there must be two symptoms of the disease. The outer list must use uppercase roman numeral and the inner list must use uppercase letters. All of the styles must be in an external stylesheet.	1	3	2.5.1 2.5.2
Explain how to access elements in JavaScript with an example.	2	2	1.6.1
Create HTML document which displays three radio buttons labeled as VISA, DISCOVER and CASH. The event handler for these radio buttons must produce message stating the chosen payment mode. Assign event handler to event property of radio button elements.	2	4	1.6.1 2.5.1 2.5.2 3.8.3
Explain the PHP.	3	2	1.6.1
Develop HTML form to collect EMPLOYEE details such as name, id, designation, gross salary from user to store details in database EMP_DETAILS using PHP and SQL.	3	4	2.8.3 3.8.3 5.4.1 5.4.2
Develop a cookies and session tracking applications.	4	4	2.7.1 2.7.2 2.8.3 3.8.3 5.4.1

			5.4.2 8.3.1
--	--	--	----------------

Evaluation Scheme:

Assessment	Marks	Weight age
CIE-I	40	20
CIE-II	40	20
Regular Lab and Lab CIE(Assignment)	10	10
SEE	100	50
Total	150	100

Details of Assignment:

Assignment	Marks	CO	Р	C	PO
	(10)		Ι	A	
Assignment 1: Miniproject real world application	5	1	1.6.1		1,2
			2.5.1		
			2.5.2		
Assignment 2: Regular Lab and Lab CIE	5	2,3,	2.7.1		2,3,5,
		4	2.7.2		8
			2.8.3		
			3.8.3		
			5.4.1		
			5.4.2		
			8.3.1		

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOT

COURSE PLAN

Title of Course	:	Web Programming	Course Code	:	21UCS004N
Credits	:	3	Contact Hours/ Week	:	3
Total Hours	:	40	Tutorial Hours	:	0
CIE Marks	:	50	SEE Marks	:	50
Semester	:	5	Year	:	2023-24

Prerequisites:

C programming,

Course Objectives:

	The Course objectives are:
1	Become familiar with basic principles of web programming toward problem solving, inference, perception, knowledge representation, and learning.
2	Investigate applications of web programming in business and enterprise solutions.
3	Explore the current scope, potential, limitations, and implications of web programming
5	Design and web program for small business systems.

Course Outcomes:

	The Course objectives are:
1	Implement web concepts using different tools like HTML/XHTML/CSS/JavaScript /XML/XSLT/jQuery/AngularJS.
2	Design web applications using client-side Java Scripts.
3	Implement web applications using server –side PHP.
4	Develop web application for real world problem.
5	Apply the web design principles for web sites.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2	PSO3
No	Programme Outcomes Course Outcomes															
The	students will be able to:															
1	Implement web concepts using different tools like HTML/XHTML/CSS/JavaScript /XML/XSLT/jQuery/AngularJS.	2	2	3	2									3	1	2
2	Design web applications using client-side Java Scripts.	3	2		3										2	
3	Implement web applications using server –side PHP.		3	3	3		2							3		3
4	Develop web application for real world problem.		2	1	3	3									2	
5	Apply the web design principles for hosting web sites.				3								3		3	2

Competencies Addressed in the course and Corresponding Performance Indicators

Programme Outcome: Any of 1 to 12 PO's:

Competency	Indicators
1. Identify complex engineering	i. Students should be able to identify
problem	problems that require web
	programming solutions
	ii. Identify the domains where web site
	may be developed
2. Design a system and identify system	iii. Analysis of the problem, represent the
requirements	solution using web applications
	iv. Analyze the complexity of the web
	programming solution
3. Consideration for public health,	v. Designing systems for healthcare,
safety	cybersecurity and safety
	vi. Employ dynamic web programming
	abilities
4. Cultural, societal and environmental	vii. Applying the web solutions for
considerations	societal needs and environmental
	protection, especially the problems

like healthcare, telemonitoring, like
proctored conduction of examinations

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Unit Learning Outcome (ULO)	СО	BLL	PI
			address
			ed
Identify problems that are amenable to solution by web	1,2	1,2,4	i, ii, iii,
programming methods. Illustrate the dynamic web application			iv, v,
creation.			and vi

Unit Learning Outcomes (ULO):

Analyze various dynamic web programming methodologies		3,5	vii
Apply solution to real time problems using web solutions.		3,4	viii
Demonstrate the knowledge of intelligent system creation using		2, 6	ix
web programming			

Course Content:

Hours	Topic to be covered	N	Mode of Delivery	
Required				
01	A Brief Introduction to the Internet	i.	Chalk and talk in	
01	The World Wide Web		classroom	
01	Web Browsers	ii.	Lecture combined	
01	Web Servers		with discussions	
01	Uniform Resource Locators	iii.	Assignments	
01	Origins and Evolution of HTML	iv.	Group Assignment	
01	Basic Syntax			
01	Standard HTML Document Structure, Basic Text			
	Markup,			
01	Images, Hypertext Links, Lists;	i.	Lecture combined	
01	Tables, Forms :The Audio Element,	1	with discussions	
01	The Video Element, Organization Elements, The	ii.	Tutorial	
	Time Element,	iii.	Assignments	
01	Syntactic Differences between HTML and XHTML.	iv.	Group Assignment	
01	Cascading Style Sheets: Introduction, Levels of	v.	Seminars,	
	Style Sheets,	-	Presentations	
01	Style Specification Formats, Selector Forms,			
	Property-Value Forms, Font Properties	-		
01	List Properties, Alignment of Text, Color: The Box Model,			
01	Background Images, The span and div Tags,	1		
	Conflict Resolution.			
01	Overview of JavaScript, Object Orientation and			
	JavaScript, General Syntactic Characteristics,			
	Primitives, Operations, and Expressions,			
01	Screen Output and Keyboard Input, Control	i.	Lecture combined	
	Statements, Object Creation and Modification		with discussions	
01	Arrays, Functions, And Example, Constructors,	ii.	Tutorial	
	Pattern Matching Using Regular Expressions.	iii.	Demonstration	
01	JavaScript and HTML Documents: The JavaScript	iv.	Group Assignment	
	Execution Environment, The Document Object	v.	Seminars,	
	Model,	4.	Presentations	
01	Element Access in JavaScript, Events and Event Handling.	vi.	Group Discussion	

01	Handling Events from Body Elements,		
01	Handling Events from Button Elements		
01	Handling Events from Textbox and Password,		
01	Introduction, Positioning Elements,		
01	: Moving Elements,		
01	Element Visibility,		
01	Changing Colors and Fonts,		
01	Dynamic Content, Stacking Elements		
01	, Locating the Mouse Cursor, Reacting to a Mouse	i.	Lecture combined
	Click,		with discussions
01	Slow Movement of Elements,	ii.	Assignments
01	Dragging and Dropping Elements.	iii.	Demonstration
01	Origins and Uses of PHP, Overview of PHP,	iv.	Group Assignment
01	General Syntactic Characteristics,	v.	Seminars,
01	Primitives, Operations, and Expressions		Presentations
01	Output, Control Statements,		
01	Arrays, Functions, Pattern Matching,		
01	Form Handling ,Cookies, Session Tracking.		
01	Database Access with PHP and MySQL.		

Review Questions:

i.	ii. Students should be able to identify problems that require web programming				
	solutions		_		
	iii. Identify the domains where web application may be	develo	ped		
iv.	Design html page using style sheets				
v.	vi. Designing systems for healthcare, cybersecurity and	safety			
	vii. Employ dynamic web programming technique				
viii.	ix. Design web application for business applications				
	Review Questions	ULO		BLL	PI
					addressed
What	are the Basic text markup tags illustrated with	7	1	1	1.1.1
examp	le.				
Creat	e XHTML document to describe an unordered list of	8	4	2	2.1.1
at lea	st four countries. Each element of the list must have				
a nest	ted list of at least three states in the country.				
How	table created in HTML and explain the Basic table	7	2	1	1.1.2
tags v	vith an example.				
Creat	e XHTML document that has a form with following	8	4	4	1.1.2
contr	ols				
i)	Text box to collect user name.				
II)	Four check boxes for weight				

representation(40kg,50kg,60kg,70kg)				
iii) Three radio button for representation of bank				
card(Visa, Master, Discover)				
Describe the methods in Math, Number, string and Date		2	2	2.1.2
object with examples.				
Write java script to compute the real roots of a given	8	3	2	4.4.1
quadratic equation. Get the coefficient of the equation				
from the user.				
Explain Document object model in Java script. How	7	1	3	1.2.1
element access is done in Java Script? Give Example.				
Write HTML document and Java script to Illustrate the	8	3	4	1.4.1
form element validation to HTML document that displays				
the text boxes for a customer name and phone number.				
Describe the positioning elements using Java script for	7	2	3	2.1.2
three different types positioning.				
Write HTML document with Java script that must contain	8	4	2	3.1.2
for short paragraph of text stacked on top of each other				
with only enough of each.				
How elements and attributes declared in HTML	7	2	1	2.3.1
document? Give example.				
Write the DTD for describing planes(Year, make, color,	8	4	4	2.1.2
price, seller, location(city, state)). Represent the XML				
document that is valid for the planes DTD.				
Explain the two different types of JSP page architecture.	7	2	2	2.1.1
Write the functions of components of this model with				
block diagram.				
List the JSP elements. Explain Directive and scripting	8	2	3	2.1.3
elements of JSP page with example.				
Identify the actions elements in JSP. Illustrate	8	4	1	4.3.1
implementation of these using program examples.				
Explain the EJB architecture in detail by exploring the	7	2	3	1.4.1
functions of EJB server, EJB Container.				
Identify the classification of EJBs. Explain lifecycle of a	8	4	4	2.4.2
stateless session Bean with block diagram.				
Explain the EJB architecture in detail by exploring the	7	2	3	1.4.1
functions of EJB server, EJB Container.				

Evaluation Scheme:

Assessment		Weightage
CIE-I	20	20
CIE-II	20	20
Assignments/ Quizzes/ Case Study/ Course Project/ Term	10	10
Paper/Field Work		
SEE	50	50
Total	100	100

Details of Assignment:

Assignment	Marks (10)	СО	PI	CA	РО
Assignment 1: Design and develop static web page using HTML to demonstrate tables, different forms of hypertext links and frames.	2	1	i, ii	1	1,2
Assignment 2: Design and develop web page to demonstrate CSS (Use different font styles, set background image for both the page and single elements on page, Control the repetition of image with background-repeat property, define style for links as a:link, a:active, a:hover,a:visited)	2	2	lii, iv	2	3,4
Assignment 3: Develop dynamic web page to demonstrate Positioning Elements, Moving Elements, Implement web page to demonstrate Element Visibility, Changing Colors and Fonts,	2	3	v, vi	2	5
Assignment 4 Develop dynamic web page to demonstrate Dynamic Content, Develop dynamic web page to demonstrate Stacking Elements, Locating the Mouse Cursor, reacting to a Mouse Click	2	4	vii, viii	3	6
Assignment 5: PHP program to demonstrate Cookie creation, display and deletion.	2	5	ix	4	12