BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOT

COURSEPLAN

Title of Course	:	Object Oriented Programming with Java	Course Code	:	22UCS302C
Credits	:	03	Contact Hours/ Week	:	(2+2)
Total Hours	:	40	Tutorial Hours	:	0
CIE Marks	:	50	SEE Marks	:	50
Semester	:	3	Year	:	2023-24

Prerequisites:

Nil

Course Objectives:

	The Course objectives are:
1	Learn object oriented concepts using programming examples
2	Study the concepts of importing of packages and exception handling mechanism
3	Study the concepts of Multithreading
4	Study the concepts of JDBC

Course Outcomes:

	At the end of the course, the student should be able to:
1	Explain the object-oriented concepts and other features of JAVA
2	Demonstrate the concepts of packages, interfaces, exception handling
3	Demonstrate the concepts of multithreading and Lambda expressions
4	Demonstrate the database access and details for managing information using the JDBC API
5	Design and develop solutions to real time problems using the JAVA.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO	PO	PO	PO	РО	PO	PO	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO
		1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
N o	Programme Outcomes Course Outcomes															
The	e students will be able	to:														
1	Explain the object- oriented concepts and other features of JAVA	3	2											1		
2	Demonstrate the concepts of packages, interfaces, exception handling	1	2											2		1
3	Demonstrate the concepts of multithreading and Lambda expressions	1	3											1		2
4	Demonstrate the database access and details for managing information using the JDBC API	2	2											1		1
5	Design and develop solutions to real time problems using the JAVA.		3											2		1

Competencies Addressed in the course and Corresponding Performance Indicators

Programme Outcome: Any of 1 to 12 PO's:

PO 1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering							
fundamentals, and an engineering specialization for the solution of complex engineering							
problems.							
Competency	Indicators						
1.4 Demonstrate competencein							
specialized engineering knowledge other	e 1.4.1Applytheoryandprinciplesofcomputerscienceandengine						
program	eringtosolveanengineeringproblem						
PO2: Problem analysis: Identify, for	O2: Problem analysis: Identify, formulate, research literature, and analyse complex						
engineering problems reaching substantiated conclusions using first principles of							
mathematics, natural sciences, and engineering sciences.							
Competency I	ndicators						

2.1 Demonstrateanabilityto identify and formulatecomplexengineeringpro blem	2.1.1 Identifyprocesses/modules/algorithmsofacomputer- basedsystemandparameterstosolveaproblem					
PO 3: Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.						
Competency	Indicators					
3.8Demonstrate an ability toadvanceanengineeringdesigntod efinedendstate	3.8.2 Abletoimplementandintegratethemodules3.8.3 Able toverifythefunctionalitiesandvalidatethedesign.					

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Unit Learning Outcomes (ULO):

Unit Learning Outcome (ULO)	СО	BLL	PI addressed
Explain the basic of Object Oriented Programming	1	1,2	1.4.1
Apply the concept of packages, interfaces, exception handling	2	3	1.4.1,2.1.1
Apply the concept of Multithreading and Lambda based expression	3	3	1.4.1,2.1.1
Apply the concept of JDBC	4	3,4	1.4.1, 2.1.1
Design and Develop Solutions to real time problems using JAVA	5	4	1.4.1,2.1.1,
			3.8.2, 3.8.3

Course Content:

Hours	Topic to be covered	Mode of Delivery
Required		
01	An overview of Java, Data Types, Variables	i. Chalk and talk in
01	Arrays	classroom
01	Control statements	11. Lecture combined
01	Introducing Classes: Class Fundamentals, Declaring Objects	iii Assignments
01	Constructor, parameterized constructor	III. Assignments
01	Garbage Collection	
01	Method overloading	
01	String Handling	
01	Inheritance: basic concepts	
01	Types of inheritance	
01	Packages	
01	Interfaces	
01	Exception-Handling Fundamentals	
01	Types of exception handling	
01	Uncaught Exceptions, Using try and catch	
01	Multiple catch clauses	
01	Lambda Expressions: Fundamentals	
01	Block Lambda expressions, Passing Lambda Expressions as argument	
01	Lambda Expressions and Exceptions.	
01	Multithreaded Programming: The Java Thread Model, The Main Thread	
01	Creating a Thread, Creating Multiple Threads	
01	Thread Priorities	
01	Synchronization	
01	Inter thread communication	
01	The Concept of JDBC	
01	JDBC Driver Types	
01	JDBC Packages, A Brief Overview of the JDBC process	
01	Database Connection	

01	Associating the JDBC/ODBC Bridge with the Database	
01	Statement object	
01	Result Set Objects	
01	Transaction Processing	

Review Questions:

Review Questions	ULO	BLL	PI addressed
How does Java achieve platform independence?	1	1	1.4.1
What is the purpose of garbage collection in Java, and when is it used	1	2	1.4.1
With syntax and examples, initialization of one-dimensional and two-	1	3	1.4.1
dimensional arrays.			
What is the usage of super keyword	2	2	1.4.1
How are exceptions handled in Java	2	2	1.4.1
What is the ideal usage of Lamda expression	3	2	1.4.1
Describe synchronization with respect to multithreading.	3	2	2.1.1
Write a class that implements the Char Sequence interface found in the java.lang package. Implementation should return the string backwards. Select one of the sentences from this book to use as the data.	3	3	1.4.1
Analyse the different ways of using thread	3	3	2.1.1
Types of JDBC driver	2	2	1.4.1
Explain the JDBC API components	2	2	2.1.1

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	20	20
CIE-II	20	20
Assignments/ Quizzes/Case Study/ Course Project/Term Paper/Field Work	10	10
SEE	50	50
Total	100	100

Details of Assignment:

Assignment	Marks (10)	СО	PI	CA	РО
Assignment I :Writeup to explain or solve problems	5	1,2,3,4,5	1.4.1		1,2,3
Assignment 2:MCQ based QUIZ	5	2,3,4	1.4.1		1,2,3

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOT

MODEL COURSEPLAN

Title of Course	:	Computer Organization	Course Code	:	22UCS303C
Credits	:	3	Contact Hours/ Week	:	3
Total Hours	:	40	Tutorial Hours	:	
CIE Marks	:	50	SEE Marks	:	50
Semester	:	Ш	Year	:	2023-2024

Prerequisites:

Course Objectives:

	The Course objectives are:
1	To understand the design and interaction concepts of modern computer subsystem
2	To learn the technique for analyzing the performance of computer system.

Course Outcomes:

	At the end of the course the student should be able to:
1	Explain the design and function of different units of computer
2	Perform the various operations on given data
3	Analyse the execution of the program and different organizations of functional units
4	Develop an assembly programs and micro programs for simple machine instructions
5	Design the basic functional units of computer

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO 1	PO2	PO3	PO4	PO5	PO6	РО 7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
No	Programme Outcomes Course Outcomes															
The	students will be able to:															
1	Explain the design and function of different units of Computer	1											1	1		
2	Perform the various operations on given data		3										1	1		2
3	Analyse the execution of the program and different organizations of functional units		2	2									1	1		2
4	Develop assembly programs and micro programs for simple machine instructions			3									1	1		2
5	Design the basic functional units of computer			3									1	1		3

Competencies Addressed in the course and Corresponding Performance Indicators

Programme Outcome: Any of 1 to 12 PO's:

PO 1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialisation for the solution of complex engineering
problems.

Competency	Indicators					
1.6 Demonstrate competence in engineering	1.6.1 Apply engineering fundamentals					
fundamentals						
1.7 Demonstrate competence in specialized	1.7.1 Apply theory and principles of					
engineering knowledge to the program	computer science and engineering to solve					
	an engineering problem					
PO2. Problem analysis: Identify, formulate, review research literature, and analyz						
complex engineering problems reaching substantiated conclusions using first principles o						
mathematics, natural sciences, and engineering sciences.						
Competency Indicators						

2.8 Demonstrate an ability to execute a solution process and analyze results	2.8.1 Applies engineering mathematics to implement the solution.2.8.2 Analyze and interpret the results using contemporary tools.

PO 3: Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

Competency	Indicators			
3.6 Demonstrate an ability to	3.6.1 Able to explore design alternatives.			
generate a diverse set of	3.6.2 Able to produce a variety of potential			
alternative design solutions	design solutions suited to meet functional			
	requirements.			
3.7 Demonstrate an ability	3.7.1 Able to perform systematic evaluation			
to select optimal design	of the degree to which several design			
scheme for further	concepts meet the criteria.			
development				
3.8 Demonstrate an ability to	3.8.1 Able to refine architecture design into			
advance an engineering	a detailed design within the existing			
design to defined end state	constraints.			
	3.8.2 Able to implement and integrate the			
	modules.			
	3.8.3 Able to verify the functionalities and			
validate the design.				
PO 12: Life-long learning: Recognise the need	for, and have the preparation and ability to			
engage in independent and life-long learning	in the broadest context of technological			
change.				
Competency	Indicators			
12.4 Demonstrate an ability to identify gaps	12.4.1 Describe the rationale for the			
In knowledge and a strategy to close	requirement for continuing professional			
these gaps	development			
	12.4.2 Identify deficiencies of gaps in			
	knowledge and demonstrate an ability to			
12 E Domonstrato an ability to identify	12 E 1 Identify historic points of			
12.5 Demonstrate an ability to identify	12.5.1 Identify historic points of			
and practice	required practitionars to sook education in			
	order to stay current			
	12.5.2 Recognize the need and he able to			
	clearly explain why it is vitally important to			
	keen current regarding new developments			
	in your field			

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PSO1: Inculcate analytical, logical, programming and managerial abilities.

PSO2: Apply Software Engineering Principles and Practices to provide software solutions

PSO3: Design and Develop computational systems for real-life applications.

Unit Learning Outcomes (ULO):

Unit 1 Learning Outcome (ULO)	СО	BLL	PI
			addressed
Explain the functioning of different components of the	1	2	1.6.1,12.4.1,
computer system.			12.4.2
			12.5.1,
			12.5.2
Write assembly programs	4	3	3.7.1,12.4.1,
			12.4.2
			12.5.1,
			12.5.2
Analyze the execution of the program	2	4	2.8.1,
			2.8.2,12.4.1,
			12.4.2
			12.5.1,
			12.5.2

Unit 2 Learning Outcome (ULO)	CO	BLL	PI
			addressed
Explain the functioning of different components of the	1	2	1.6,12.4,
computer system.			12.5
Write assembly programs	4	3	3.7.1,12.4.1,
			12.4.2
			12.5.1,
			12.5.2
Design basic I/O interface circuits	5	3	3.7.1,12.4.1,
			12.4.2
			12.5.1,

	12.5.2

Unit 3 Learning Outcome (ULO)	СО	BLL	PI
			addressed
Explain the functioning of different components of the computer	1	2	1.6.1,12.4.1,
system.			12.4.2
			12.5.1,
			12.5.2
Design the building blocks of ALU	5	3	3.7.1,12.4.1,
			12.4.2
			12.5.1,
			12.5.2

Unit 4 Learning Outcome (ULO)	СО	BLL	PI
			addressed
Explain the functioning of different components of the	1	2	1.6,12.4,
computer system.			12.5
Write microprograms	4	3	3.7.1,12.4.1,
			12.4.2
			12.5.1,
			12.5.2
Analyze the performance of processors	3	4	2.8.1,
			2.8.2,12.4.1,
			12.4.2
			12.5.1,
			12.5.2

Course Content:

	UNIT – I	
Hour	Syllabus to be covered	Mode of delivery
1	Basic structure of Computers: Computer types, Functional Units	Lecture with a
2	Basic operational concepts, Bus structures	quiz/ Assignments
3	Machine instructions and programs: Numbers, Arithmetic operations an characters	
4	Memory locations and addresses, Memory operations	
5	Instructions and instruction sequencing	
6	Addressing modes	
7	Assembly language, assembler directives, Number Notations	
8	Stacks	
9	Subroutines	
10	Encoding of machine instructions	
	UNIT - II	
11	Input/output organization: Accessing I/O devices	Lecture with a
12	Interrupts-Interrupt hardware, Enabling and Disabling Interrupts	quiz/ Assignments
13	Handling Multiple devices controlling device requests	C C
14	Exceptions, Direct memory access – Bus Arbitrations	
15	Buses- Asynchronous Bus	
16	Synchronous bus	
17	Interface Circuits- Parallel port	
18	serial port	
19	Standard I/O Interfaces – Peripheral component interconnect Bus,	
20	SCSI bus ,USB.	

	UNIT - III	
21	The memory system: Some Basic concepts,	
	Semiconductor RAM memories, and cost, Read only memories, speed, size.	
22		
23	cache memories	
	Arithmetic Unit:	
24	Addition and subtraction of signed numbers	
25	Design of fast adders	
26	Multiplication of positive numbers,	
	Signed operand multiplication	_
27	Fast multiplication	
28	Integer Division	
29	Floating point numbers and operations – IEEE standard for Floating	
	point numbers, Arithmetic operations on Floating point numbers	_
30	Implementing Floating point operations	
	UNIT - IV	
31	Basic Processing Unit:	Lecture with a
	Some fundamental concepts, Execution of complete instruction	Assignments
32	Hardwired Control	
33	Micro programmed control, Microinstructions,	
34	Pipelining: basic concepts, role of cache memory	
35	pipeline performance	
36	Large computer systems: forms of parallel processing,	
37	array processor,	
38	the structure of general purpose and multiprocessors systems	
39	Performance:	
	Processor Clock, Basic performance equation, pipelining	
40		
	performance measurement	

Review Questions:

Review Questions	ULO	BLL	PI addressed
Explain role of MAR and MBR/MDR registers in memory read	1.1	2	1.6.1,12.4.1,
and write operations with the help of Instruction ADD			12.4.2
R1, LOCX			12.5.1,
			12.5.2
Explain following addressing modes with examples:	1.1	2	1.6.1,12.4.1,
			12.4.2
i) Indexed addressing			12.5.1,
ii) Direct addressing			12.5.2
Write an assembly program to multiply two numbers without	1.2	3	3.7.1,12.4.1,
using			12.4.2
			12.5.1,
MULTIPLICATION instruction.			12.5.2
Illustrate use of stack to handle functions.	1.1	2	1.6.1,12.4.1,
			12.4.2
			12.5.1,
			12.5.2
Design 4-bit Adder/Subtractor using full adders as building	3.2	3,4	3.7.1,12.4.1,
blocks and additional components if necessary.			12.4.2
			12.5.1,
			12.5.2
Write sequence of control signals for instruction	4.2	3,4	3.7,12.4,12.5
i) ADD R1, R2 ii) MOV LOCA,R5			
Explain following terms :	4.1	2	1.6,12.4,
i) Micro instruction ii) Micro program iii) Control store			12.5
iv) Hardwired control unit v) Micro programed control			
unit.			

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	20	20
CIE-II	20	20
Assignments/ Quizzes/	10	10
Case Study/ Course Project/		
Term Paper/Field Work		
SEE	100	50
Total	150	100

Details of Assignment:

Assignment	Marks (10)	СО	PI	СА	PO
Assignment 1:	10	4	3.7.1,12.4.1,		4,12
Write an			12.4.2		
assembly					
program					
Assignment 2:	10	5	3.7.1,12.4.1,		5,12
Design circuit			12.4.2		
Assignment 3:	10	4	3.7,12.4,12.5		4,12
Write micro					
program					
Assignment 4:	10	1	1.6.1,12.4.1,		1,12
Study commercial			12.4.2		
pipelined and			12.5.1,		
multiprocessor			12.5.2		
systems					

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOT

MODEL COURSEPLAN

Title of Course	:	Computer Organization	Course Code	:	22UCS303C
Credits	:	3	Contact Hours/ Week	:	3
Total Hours	:	40	Tutorial Hours	:	
CIE Marks	:	50	SEE Marks	:	50
Semester	:	Ш	Year	:	2023-2024

Prerequisites:

Course Objectives:

	The Course objectives are:
1	To understand the design and interaction concepts of modern computer subsystem
2	To learn the technique for analyzing the performance of computer system.

Course Outcomes:

	At the end of the course the student should be able to:
1	Explain the design and function of different units of computer
2	Perform the various operations on given data
3	Analyse the execution of the program and different organizations of functional units
4	Develop an assembly programs and micro programs for simple machine instructions
5	Design the basic functional units of computer

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO 1	PO2	PO3	PO4	PO5	PO6	РО 7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
No	Programme Outcomes Course Outcomes															
The	The students will be able to:															
1	Explain the design and function of different units of Computer	1											1	1		
2	Perform the various operations on given data		3										1	1		2
3	Analyse the execution of the program and different organizations of functional units		2	2									1	1		2
4	Develop assembly programs and micro programs for simple machine instructions			3									1	1		2
5	Design the basic functional units of computer			3									1	1		3

Competencies Addressed in the course and Corresponding Performance Indicators

Programme Outcome: Any of 1 to 12 PO's:

PO 1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialisation for the solution of complex engineering
problems.

Competency	Indicators
1.6 Demonstrate competence in engineering	1.6.1 Apply engineering fundamentals
fundamentals	
1.7 Demonstrate competence in specialized	1.7.1 Apply theory and principles of
engineering knowledge to the program	computer science and engineering to solve
	an engineering problem
PO2. Problem analysis: Identify, formulate	e, review research literature, and analyze
complex engineering problems reaching subs	tantiated conclusions using first principles of
mathematics, natural sciences, and engineeri	ng sciences.
Competency	Indicators

2.8 Demonstrate an ability to execute a solution process and analyze results	2.8.1 Applies engineering mathematics to implement the solution.2.8.2 Analyze and interpret the results using contemporary tools.

PO 3: Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.

Competency	Indicators
3.6 Demonstrate an ability to	3.6.1 Able to explore design alternatives.
generate a diverse set of	3.6.2 Able to produce a variety of potential
alternative design solutions	design solutions suited to meet functional
	requirements.
3.7 Demonstrate an ability	3.7.1 Able to perform systematic evaluation
to select optimal design	of the degree to which several design
scheme for further	concepts meet the criteria.
development	
3.8 Demonstrate an ability to	3.8.1 Able to refine architecture design into
advance an engineering	a detailed design within the existing
design to defined end state	constraints.
	3.8.2 Able to implement and integrate the
	modules.
	3.8.3 Able to verify the functionalities and
	validate the design.
PO 12: Life-long learning: Recognise the need	for, and have the preparation and ability to
engage in independent and life-long learning	in the broadest context of technological
change.	
Competency	Indicators
12.4 Demonstrate an ability to identify gaps	12.4.1 Describe the rationale for the
In knowledge and a strategy to close	requirement for continuing professional
these gaps	development
	12.4.2 Identify deficiencies of gaps in
	knowledge and demonstrate an ability to
12 E Domonstrato an ability to identify	12 E 1 Identify historic points of
12.5 Demonstrate an ability to identify	12.5.1 Identify historic points of
and practice	required practitioners to sock education in
	order to stay current
	12.5.2 Recognize the need and he able to
	clearly explain why it is vitally important to
	keen current regarding new developments
	in your field

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PSO1: Inculcate analytical, logical, programming and managerial abilities.

PSO2: Apply Software Engineering Principles and Practices to provide software solutions

PSO3: Design and Develop computational systems for real-life applications.

Unit Learning Outcomes (ULO):

Unit 1 Learning Outcome (ULO)		BLL	PI
			addressed
Explain the functioning of different components of the	1	2	1.6.1,12.4.1,
computer system.			12.4.2
			12.5.1,
			12.5.2
Write assembly programs	4	3	3.7.1,12.4.1,
			12.4.2
			12.5.1,
			12.5.2
Analyze the execution of the program	2	4	2.8.1,
			2.8.2,12.4.1,
			12.4.2
			12.5.1,
			12.5.2

Unit 2 Learning Outcome (ULO)	CO	BLL	PI
			addressed
Explain the functioning of different components of the	1	2	1.6,12.4,
computer system.			12.5
Write assembly programs	4	3	3.7.1,12.4.1,
			12.4.2
			12.5.1,
			12.5.2
Design basic I/O interface circuits	5	3	3.7.1,12.4.1,
			12.4.2
			12.5.1,

	12.5.2

Unit 3 Learning Outcome (ULO)		BLL	PI
			addressed
Explain the functioning of different components of the computer	1	2	1.6.1,12.4.1,
system.			12.4.2
			12.5.1,
			12.5.2
Design the building blocks of ALU	5	3	3.7.1,12.4.1,
			12.4.2
			12.5.1,
			12.5.2

Unit 4 Learning Outcome (ULO)	СО	BLL	PI
			addressed
Explain the functioning of different components of the	1	2	1.6,12.4,
computer system.			12.5
Write microprograms	4	3	3.7.1,12.4.1,
			12.4.2
			12.5.1,
			12.5.2
Analyze the performance of processors	3	4	2.8.1,
			2.8.2,12.4.1,
			12.4.2
			12.5.1,
			12.5.2

Course Content:

	UNIT – I	
Hour	Syllabus to be covered	Mode of delivery
1	Basic structure of Computers: Computer types, Functional Units	Lecture with a
2	Basic operational concepts, Bus structures	quiz/ Assignments
3	Machine instructions and programs: Numbers, Arithmetic operations an characters	
4	Memory locations and addresses, Memory operations	
5	Instructions and instruction sequencing	
6	Addressing modes	
7	Assembly language, assembler directives, Number Notations	
8	Stacks	
9	Subroutines	
10	Encoding of machine instructions	
	UNIT - II	
11	Input/output organization: Accessing I/O devices	Lecture with a
12	Interrupts-Interrupt hardware, Enabling and Disabling Interrupts	quiz/ Assignments
13	Handling Multiple devices controlling device requests	C C
14	Exceptions, Direct memory access – Bus Arbitrations	
15	Buses- Asynchronous Bus	
16	Synchronous bus	
17	Interface Circuits- Parallel port	
18	serial port	
19	Standard I/O Interfaces – Peripheral component interconnect Bus,	
20	SCSI bus ,USB.	

	UNIT - III	
21	The memory system: Some Basic concepts,	
	Semiconductor RAM memories, and cost, Read only memories, speed, size.	
22		
23	cache memories	
	Arithmetic Unit:	
24	Addition and subtraction of signed numbers	
25	Design of fast adders	
26	Multiplication of positive numbers,	
	Signed operand multiplication	_
27	Fast multiplication	
28	Integer Division	
29	Floating point numbers and operations – IEEE standard for Floating	
	point numbers, Arithmetic operations on Floating point numbers	_
30	Implementing Floating point operations	
	UNIT - IV	
31	Basic Processing Unit:	Lecture with a
	Some fundamental concepts, Execution of complete instruction	Assignments
32	Hardwired Control	
33	Micro programmed control, Microinstructions,	
34	Pipelining: basic concepts, role of cache memory	
35	pipeline performance	
36	Large computer systems: forms of parallel processing,	
37	array processor,	
38	the structure of general purpose and multiprocessors systems	
39	Performance:	
	Processor Clock, Basic performance equation, pipelining	
40		
	performance measurement	

Review Questions:

Review Questions	ULO	BLL	PI addressed
Explain role of MAR and MBR/MDR registers in memory read	1.1	2	1.6.1,12.4.1,
and write operations with the help of Instruction ADD			12.4.2
R1, LOCX			12.5.1,
			12.5.2
Explain following addressing modes with examples:	1.1	2	1.6.1,12.4.1,
			12.4.2
i) Indexed addressing			12.5.1,
ii) Direct addressing			12.5.2
Write an assembly program to multiply two numbers without	1.2	3	3.7.1,12.4.1,
using			12.4.2
			12.5.1,
MULTIPLICATION instruction.			12.5.2
Illustrate use of stack to handle functions.	1.1	2	1.6.1,12.4.1,
			12.4.2
			12.5.1,
			12.5.2
Design 4-bit Adder/Subtractor using full adders as building	3.2	3,4	3.7.1,12.4.1,
blocks and additional components if necessary.			12.4.2
			12.5.1,
			12.5.2
Write sequence of control signals for instruction	4.2	3,4	3.7,12.4,12.5
i) ADD R1, R2 ii) MOV LOCA,R5			
Explain following terms :	4.1	2	1.6,12.4,
i) Micro instruction ii) Micro program iii) Control store			12.5
iv) Hardwired control unit v) Micro programed control			
unit.			

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	20	20
CIE-II	20	20
Assignments/ Quizzes/	10	10
Case Study/ Course Project/		
Term Paper/Field Work		
SEE	100	50
Total	150	100

Details of Assignment:

Assignment	Marks (10)	СО	PI	CA	PO
Assignment 1:	10	4	3.7.1,12.4.1,		4,12
Write an			12.4.2		
assembly					
program					
Assignment 2:	10	5	3.7.1,12.4.1,		5,12
Design circuit			12.4.2		
Assignment 3:	10	4	3.7,12.4,12.5		4,12
Write micro					
program					
Assignment 4:	10	1	1.6.1,12.4.1,		1,12
Study commercial			12.4.2		
pipelined and			12.5.1,		
multiprocessor			12.5.2		
systems					

BASAVESHWAR ENGINEERING COLLEGE, BAGALKOTE

COURSE PLAN

Title of Course	:	Data Structures	Course Code	:	22UCS304C
Credits	:	03	Contact Hours/Week	:	02
Total Hours	:	52	Tutorial Hours	:	02
CIE Marks	:	50	SEE Marks	:	50
Semester	:	III	Year	:	2023-2024

1. Prerequisites: Strong Foundation in C Programming courses is essential to take up this course.

2. Course Objectives:

At the end of the course student will learn / understand / think / experience / appreciate / have insight / proficiency:

- 1 Advanced C features such as pointers and pointers application, dynamic memory allocation functions and recursion.
- 2 Foundations of data structure operations, design and implementation of data structures to organize data efficiently.
- 3 Designs and implementations of various data structures using abstract data types (ADTs) and without using abstract data types.
- 4 Analysis of variety of problems and selecting suitable data structures to develop the solutions.
- 5 Solving given problems using different data structures.

3. Course Outcomes:

	At the end of the course the student should be able to:
1	List and define concepts of pointers, dynamic memory allocation, recursion and data structures.
2	Explain advanced C features such as pointers, dynamic memory allocation, recursion and methods
	of implementing different data structures.
3	Implement of various data structures using abstract data type and without using ADTs
4	Analyze given problems and identify appropriate data structures to develop the solutions.
5	Solve problems using data structures to represent, organize and manipulate data for given problems.

4. **Course Articulation Matrix:** Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

			Program Outcomes(POs)					Program Specific Outcomes(PSOs)								
No.	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
The s	tudents will be able to:	·														
1	List and define concepts of pointers, dynamic memory allocation, and recursion and data structures.		2	2	2	2								3		2
2	<i>Explain advanced C features such as pointers, dynamic memory allocation, recursion and methods of implementing different data structures.</i>		2	2	2	2								2		2
3	Implement of various data structures using abstract data type and without using ADTs		3	3	3	3								3		3
4	Analyze given problems and identify appropriate data structures to develop the solutions.		3	3	3	3								3		3
5	Solve problems using data structures to represent, organize and manipulate data for given problems		3	3	3	3								3		3

5. Competencies Addressed in the course and Corresponding Performance Indicators

5.1 Programme Outcome: Any of 1 to 12 PO's:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO1. Engineering knowle	dge: Apply the knowledge of mathematics, science, engineering								
fundamentals, and an engineering specialization to the solution of complex engineering problems.									
Competency Performance Indicators									
1.7 Demonstrate competence in specialized engineering knowledge to the program	1.7.1 Apply theory and principles of computer science and engineering to solve an engineering problem								

PO2. Problem analysis: *Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.*

Compotonov	Daufaumanaa Indiaataus
Competency	reflormance indicators
2.5 Demonstrate an ability	2.5.1 Evaluate problem statements and identifies objectives
to identify and formulate	2.5.2 Identify processes/modules/algorithms of a computer-based
complex engineering	system and parameters to solve a problem
problem	2.5.3 Identify mathematical algorithmic knowledge that applies to a
	given problem
2.6 Demonstrate an ability	2.6.1 Reframe the computer-based system into interconnected
to formulate a solution	subsystems
plan and methodology for	2.6.2 Identify functionalities and computing resources.
an engineering problem	263 Identify existing solution/methods to solve the problem
	including forming justified approximations and assumptions
	2.6.4 Compare and contrast alternative solution/methods to select the
	best methods
	2.6.5 Compare and contrast alternative solution processes to select the
	best process.
2.7 Demonstrate an ability	2.7.1 Able to apply computer engineering principles to formulate
to formulate and interpret a	modules of a system with required applicability and performance.
model	2.7.2 Identify design constraints for required performance criteria.
2.8 Demonstrate an ability	2.8.1 Applies engineering mathematics to implement the solution.
to execute a solution	2.8.2 Analyze and interpret the results using contemporary tools.
process and analyze results	2.8.3 Identify the limitations of the solution and sources/causes.
	2.8.4 Arrive at conclusions with respect to the objectives.
PO3. Design/development	of solutions: Design solutions for complex engineering problems and
design system components	s or processes that meet the specified needs with appropriate
consideration for the publ	ic health and safety, and the cultural, societal, and environmental
considerations.	
Competency	Performance Indicators
3.6 Demonstrate an ability	3.6.1 Able to explore design alternatives.
to generate a diverse set of	3.6.2 Able to produce a variety of potential design solutions suited to
alternative design solutions	meet functional requirements.
	3.6.3 Identify suitable non-functional requirements for evaluation of

6. Unit Learning Outcomes (ULO):

	Unit Learning Outcome (ULO)	CO	BLL	PI addressed
Unit I Unit II	 Able to describe and apply the knowledge of pointers, memory allocation functions, recursion concepts and Stack data structure to solve different applications. Select array or linked list ADT to implement of data structures to solve problems. Able to describe and apply the representation and organization of data using stack and queue data structures to solve different applications. Select array or linked list ADT to implement of data structures to 	1, 2, 3, 4, 5	1, 2, 3, 4, 5	$1.7.1, \\2.5.1, \\2.5.2, \\2.5.3, \\2.6.3, \\2.6.4, \\2.7.1, \\2.8.1, \\2.8.3, $
	solve problems.			3.6.1,

alternate design solutions.

Unit III	3. Able to describe and apply the representation and organization of data using general, circular and doubly linked list to solve different applications. Select linked list ADT to implement of data structures to solve problems.	3.6.2, 3.7.1, 4.4.2
Unit IV	4. Able to describe and apply the representation and organization of data using trees and graphs to solve different applications. Select linked list ADT to implement of data structures to solve problems.	

7. Course Content:

Hours	Topic to be covered	Mode of Delivery
	UNIT - I	
01	Revision on C programming Concepts	
01	Pointer applications: Arrays and pointers,	
01	Pointer arithmetic and arrays, passing an array to a function, Using	
	pointers to functions.	
01	Memory allocation functions, Array of pointers, pointers to void and	
	pointers to functions	
01	Recursion: iterative and recursive definition iterative and recursive	
	solution, designing recursive functions, limitations of recursion.	
01	Stacks: Basic stack operations: Push, Pop, Stack top,	Chalk and talk in
01	Stack linked list: Implementation, Data structure, Stack head, Stack	combined with
	data node, Stack algorithms,	discussions/Lecture with
01	Create Stack, Push Stack, Stack top, Empty Stack, Full Stack, Stack	a guiz/ Tutorial/
	count, Destroy Stack	Assignments/
01	Create Stack, Push Stack, Stack top, Empty Stack, Full Stack, Stack	Demonstration/
	count, Destroy Stack	/Asynchronous
01	C language implementations: Insert data, Push Stack, Print Stack,	Discussion
	Pop character	_
01	Stack ADT: Data structure, ADT Implementations, Stack structure,	
	Create stack, Push stack, Pop stack, Stack top, Empty stack, Stack	
0.1	count, Destroy stack	_
01	Stack ADI: Data structure, ADI Implementations, Stack structure,	
	Create stack, Push stack, Pop stack, Stack top, Empty stack, Stack	
01	count, Destroy stack	-
01	Stack Implementation using array	-
	UNIT H	
01	Stack applications: Poversing data: Poverse a list Convert decimal	
	to binary Infix to postfix transformation. Evaluating postfix	
	expressions	Chalk and talk in
01	Stack applications: Reversing data: Reverse a list Convert decimal	classroom/Lecture
V1	to binary. Infix to postfix transformation Evaluating postfix	combined with
	expressions	discussions/Lecture with
01	Oueues: Oueue Operations: Enqueue. Dequeue. Oueue front. Oueue	a quiz/ Tutorial/
	rear, Queue example,	Assignments/
01	Queues: Queue Operations: Enqueue, Dequeue, Queue front, Queue	Demonstration/
	rear, Queue example,	/Asynchronous
01	Queues: Queue Operations: Enqueue, Dequeue, Queue front, Queue	Discussion
	rear, Queue example,	
01	Queue Linked list design: Data structure, Queue head, Queue data	

	node, Oueue algorithms, Create queue, Enqueue, Dequeue, Retrieving	
	queue data. Empty queue. Full queue. Oueue count. Destroy queue	
01	Oueue Linked list design: Data structure. Oueue head. Oueue data	•
01	node Queue algorithms Create queue Engueue Dequeue Retrieving	
	queue data Empty queue Full queue Queue count Destroy queue	
01	Queue Linked list design: Data structure Queue head Queue data	-
01	noda Quana algorithma Creata guana Engueva Degueva Patrioving	
	node, Queue algorithins, Create queue, Enqueue, Dequeue, Ketheving	
01	Queue data, Empty queue, Fun queue, Queue count, Destroy queue	-
01	Queue ADT: Queue structure, Queue ADT algorithms, Queue	
0.1	Implementation using array,	-
01	Queue ADT: Queue structure, Queue ADT algorithms, Queue	
0.1	Implementation using array,	
01	Queue ADT: Queue structure, Queue ADT algorithms, Queue	
	Implementation using array,	-
01	Queue Applications	
01	Queue Applications	
	UNIT - III	
01	General Linear lists: Basic operations, Insertion, Deletion, Retrieval,	
	Traversal,	
01	General Linear lists: Basic operations, Insertion, Deletion, Retrieval,	
	Traversal,	
01	Implementation: Data structure, Head node, Data node, Algorithms,	
01	Implementation: Create list, Insert node, Delete node, List search,	Chalk and talk in
	Retrieve node.	classroom/Lecture
01	Implementation: Empty list Full list List count Traverse list Destroy	combined with
01	list	discussions/Lecture with
01	List ADT: ADT functions Create list Add node Internal insertion	a guiz/ Tutorial/
01	function	A ssignments/
01	List ADT: Sourch list Internal sourch function	Domonstration/
01	List ADT. Search list, internal search function,	
01	List ADT. Retrieve flode, Empty list Full list, List could	Discussion
01	Circular Finled Field and Deepler Finled Field Courts Field and the	Discussion
01	Circular linked lists and Doubly linked lists: Create list, add node,	-
01	Circular linked lists and Doubly linked lists: delete node	
01	Circular linked lists and Doubly linked lists: Create list, add node,	
	delete node, retrieve node, search list.	
01	Circular linked lists and Doubly linked lists: retrieve node, search	
	list.	
	UNIT - IV	1
01	Non-Linear lists: Trees: Basic tree concepts: Terminology, User	
	representation	
01	Binary trees: Properties, Height of binary trees, Balance, Complete	
	and Nearly complete binary trees	
01	Binary tree traversals: Depth-first traversals, Breadth-first traversals,	
01	Expression Trees : Infix traversal, Postfix traversal, Prefix traversal	
01	Expression Trees: Huffman code, General trees,	Chalk and talk in
01	Binary search trees: Basic concepts,	classroom/Lecture
	BST operations: Traversals. Searches	combined with
01	BST operations: Insertion Find the smallest and largest node.	discussions/Lecture with
01	BST operations: BST search Insertion Deletion	a quiz/ Tutorial/
01	Binary search tree ADT Data structure Head and node structure	Assignments/
	Algorithms Create a BST Insert a RST	Demonstration/
01	Internal insert function Dalata a DST Internal dalata function Dataiava	
01	a DST. Internal metricula function, Delete a DST, Internal delete function, Retrieve	Discussion
		1 11001100100

01	Traverse a BST, Empty a BST, Full BST, BST count, Destroy a BST,	
	Internal destroy function.	
01	Graphs: Basic concepts, Operations: Insert vertex, Delete vertex,	
	Add edge, Delete edge, Find vertex,	
01	Graph storage structures: Adjacency matrix, Adjacency list.	

8. Review Questions:

Review Questions	ULO	BLL	PI
			addressed
1. Define abstract data type.	1	1	1.7.1
2. Why data accessibility is not possible in ADT functions?	1	2	1.7.1
3. Consider the following declaration statements:	1	3	2.5.1
void* p;			
int number = 7 ;			
$\frac{10at}{V} \text{ price} = 23.5;$ Write C statements to print values of variable number and price using			
nointer p:			
4. Write DisplayStack function using only Stack ADT operations to print	1	3	4.4.1
contents of stack without changing the stack contents.	-		
5. What are basic operations of stack? Implement stack ADT operations	1	2	2.6.1
using linked list.			
6. Using only the operations of queue ADT, write an application called	2	3	3.5.1
CopyQueue that copies the contents of one queue to another.			
7. With the given traversals construct binary tree for the following.	4	4	5.6.2
i) Preorder: A B M H E O C P G J D K L I N F			
Inorder: H M C O E B A G P K L D I N J F			
ii) Postoder: F E C H G D B A			
Inorder: F C E A B H D G			
8. What is queue? Implement circular queue ADT operations using	2	2	2.5.1
array.			
9. Implement binary tree ADT with the following operations:	3	3	2.5.1
i) Insert new node			
i) Breadth First Traversal of tree			
iii) To find total number of leaves in a tree			
iv) To search an element			
10 Write a C program to create employee list Each node in the list should	3	3	251
have Employee Name Department and Designation date of joining		5	2.3.1
date of hirth salary and pointer to next employee. Write a function to			
insert an employee, delete an employee and display employee list for a			
given department			
11 Implement binery tree ADT with the following exerctions:	2	2	251
11. Implement offiary use AD1 with the following operations.	5		2.3.1
a. Insert new node			
D. Breadin First Traversal of tree			
c. To find total number of leaves in a tree			
d. To search an element			0.5.1
12. With the given traversals construct binary tree for the following.	4	4	2.5.1
a. Preorder: A B M H E O C P G J D K L I N F			
Inorder: H M C O E B A G P K L D I N J F			

b. Postoder: F E C H G D B A		
Inorder: F C E A B H D G		

9. Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	40	20
CIE-II	40	20
Assignments/ Quizzes/Case Study/ Course Project/ Term Paper/ Field Work	10	10
SEE	100	50
Total	100	100

10. Details of Assignment:

Assignment	Marks (10)	СО	PI	CA	РО
Assignment 1 – UNIT -I	10	1-4	$1.7.1, 2.5.1, \\2.6.3, 2.6.4, \\2.7.1, 2.8.1, \\2.8.3, 3.6.1,$	1.7, 2.5, 2.8, 3.6	PO -3
Assignment 2 – UNIT -I	10	1-5	$1.7.1, 2.5.1, \\2.6.3, 2.6.4, \\2.7.1, 2.8.1, \\3.6.2, 3.7.1, \\4.4.2$	1.7, 2.5, 2.8, 3.6	PO- 3 PO- 4
Assignment 3 – UNIT -I	10	1-5	1.7.1, 2.5.1, 2.8.1, 2.8.3, 3.6.1, 3.6.2, 4.4.2	1.7, 2.5, 2.8, 3.6, 4.4	PO-3 PO-4 PO-5
Assignment 4: UNIT -I	10	1-5	$1.7.1, 2.5.1, \\2.6.3, 2.6.4, \\2.7.1, 2.8.3, \\3.6.1, 3.7.1, \\4.4.2$	1.7, 2.5, 2.8, 3.6, 4.4	PO-4 PO-5

BASAVESHWAR ENGINEERING COLLEGE(AUTONOMOUS), BAGALKOT Department of Computer Science & Engineering

MODEL COURSE PLAN

Title of Course	:	Digital Systems	Course Code	:	22UCS301C
Credits	:	3	Contact Hours/ Week	:	3
Total Hours	:	40	Tutorial Hours	:	0
CIE Marks	:	50	SEE Marks	:	100
Semester	:	3	Year	:	2023-24

Prerequisites:

Basic Electronic Circuits, Number Systems, Boolean algebra and Logic Gates.

Course Objectives:

	The Course objectives are:
1	Make use of simplifying techniques in the design of combinational circuits.
2	Illustrate combinational and sequential digital circuits.
3	Demonstrate the use of flip flops.
4	Design and test registers and counters.
5	Implement the combinational and sequential circuits using Verilog/VHDL programming.

Course Outcomes:

	At the end of the course the student should be able to:
1	Demonstrate the understanding of Boolean algebra.
2	Describe the working of Combinational circuits.
3	Apply the Boolean theorems, K-Map, Q-M and VEM methods to simplify Boolean expressions.
4	Describe the working of Sequential circuits.
5	Simulate combinational and sequential circuits using HDL programming.

22UCS301C		Credits: 03
L:T:P - 3 : 0 : 0	Digital Systems	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I

UNIT-II

Boolean algebra and Combinational Circuits:

Boolean algebra definition, Principle of Duality, Boolean algebra theorems, Boolean formulas and functions, Normal forms. Minterm canonical form, m-notation, Maxterm Canonical form, M-notation. Manipulation of Boolean expressions. Gates and combinational circuits. Incomplete Boolean functions and don't care conditions, Additional Boolean operations and Gates.

Simplifications of Boolean Expressions:

Formulations of simplification problem, Prime Implicants and Irredundant disjunctive expressions, Prime implicates and Irredundant conjunctive expressions, Karnaugh maps, Using Karnaugh maps to obtain minimal expressions for complete Boolean functions, Minimal expressions of incomplete Boolean functions.

The Quine-McCluskey method of generating Prime Implicants and Prime Implicates, Decimal method for obtaining prime Implicants, Variable-Entered Karnaugh maps.

UNIT-III

10 Hrs.

10 Hrs.

10 Hrs.

10 Hrs.

Logic Design with MSI Components and Programmable Logic Devices:

Binary adders and Subtractor, Decimal adders, Comparators, Decoders, Multiplexers. Programmable logic devices (PLDs), Programmable read only memories (PROMs), Programmable logic arrays (PLAs), Programmable array logics (PALs)

UNIT-IV

Flip-Flops and Applications:

The Basic Bistable Element: Lathes, Master-Slave flip-flops (Pulse-Triggered flip-flops), Edge triggered flop-flops, Characteristic equations.

Registers: Serial In Serial Out, Serial In Parallel Out Parallel in Parallel Out, Parallel In Serial Out, Circular, Universal Shift Registers.

Counters: Binary Ripple Counter, Synchronous Binary Counters, Mod and Ring counters. Design of Synchronous Counters.

HDL implementations of combinational and sequential circuits.

Reference Books *

- 1. D. D. Givone, 8th Edition, 2017, "Digital Principles and Design", McGraw Hill.
- 2. R. D. Sudhakar Samuel, Revised Edition, 2005, "Logic Design A simplified approach", Sanguine Technical Publications.
- 3. Malvino, Leach and Saha, 6th Edition, 2007, "Digital Principles and applications", McGraw Hill.
- 4. McGraw Hill, 2nd Edition, 2002, "Fundamental of digital Logic with Verilog Design", McGraw Hill.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO1	PO2	PO3	PO4	PO5	PO6	РО 7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2	PSO3
No	Programme Outcomes Course Outcomes															
The	students will be able to:															
1	Demonstrate the understanding of Boolean algebra.	3	1	-	-	-	-	-	-	-	-	-	1	1	-	1
2	2 Describe the working of Combinational circuits.		1	-	-	-	-	-	-	-	-	-	1	1	-	1
3	3 Apply the Boolean theorems, K- Map, Q-M and VEM methods to simplify Boolean expressions.		-	-	-	-	-	-	-	-	-	-	1	1	-	1
4	Describe the working of Sequential circuits.	1	1	2	-	-	-	-	-	-	-	-	1	1	-	2
5	Simulate combinational and sequential circuits using HDL programming.	1	1	2	-	-	-	-	-	-	-	-	1	1	-	2

Competencies Addressed in the course and Corresponding Performance Indicators

Programme Outcome: Any of 1 to 12 PO's:

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

Competency	Indicators
 Identify complex engineering problem 	i. Students should be able to identify problems that require Digital Systems.
	 ii. Identify the domains where Digital Systems may be developed
Design a system and identify system requirements	 iii. Analysis of the problem, represent the knowledge iv. Encode the knowledge v. Augment the knowledge vi Analyze the complexity of the solution
 Consideration for public health, safety 	 vii. Designing systems for healthcare, cyber security and safety viii. Employ knowledge representation, search, inference, and reasoning abilities
 Cultural, societal and environmental considerations 	 ix. Applying the DS for societal needs and environmental protection, especially the problems like conservation of water, conservation of forest, healthcare, telemonitoring, ensuring social and ethical responsibilities, like proctored conduction of examinations

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Unit Learning Outcome (ULO)	CO	BLL	PI
			address
			ea
Demonstrate the understanding of Boolean algebra.	1,2	1,2,4	i, ii, iii,
			iv, v,
			and vi
Describe the working of Combinational and sequential circuits.	3	3,5	vii
Apply the Boolean theorems, K-Map, Q-M and VEM methods to	4	3,4	viii
simplify Boolean expressions.			
Simulate combinational and sequential circuits using HDL	5	2, 6	ix
programming.			

Unit Learning Outcomes (ULO):

Course Content:

Unit-I Boolean algebra and combinational circuits. **Total Hours: 10**

Hours

Syllabus to be covered

No					
1-2	Boolean algebra- Definition, principle of duality, Boolean algebra theorems.				
3-4	Boolean algebra Boolean formulas and functions.				
5.6	Normal forms Canonical Formulas- Minterm canonical formula, m-notation. Maxterm				
3-0	canonical formula, M-notation.				
7-8	Manipulation of Boolean expressions.				
0.10	Gates and combinational networks. Incomplete Boolean functions and don't care				
9-10	conditions.				
11-12	Additional Boolean operations and gates.				
13	Introduction to HDL.				

Unit-II 13 Simplification of Boolean expressions.

Hours No	Syllabus to be covered					
14-15	Introduction to Karnaugh-maps.					
16-19	Use of Karnaugh-maps to minimize Boolean Expressions					
20	Minimal Expressions of Incomplete Boolean Functions.					
21-23	The Quine-McCliskey method of generating prime implicants and prime implicates					
24	Decimal method for obtaining prime implicants implicates.					
25-26	Variable Entered K-map					

Unit-III Hours: 13 Logic Design using MSI Components, Flip-Flops and applications.

Hours No	Syllabus to be covered				
27-29	Binary Adders and Substractor.				
30	Comparators.				
31-33	Decoders, Encoders and Multiplexers.				
34	Basic bistable elements.				
35-37	Latches and Master Slave Flip-Flops				
38	Edge Triggered Flip-Flops, Characteristic equations.				
39	HDL implementation of logic circuits.				

Unit-IV

Hours: 13 Registers, Counters, Operational Amplifiers and its Applications

Hours No	Syllabus to be covered						
40-41	Registers						
42-44	Counters, Design of synchronous counters.						
45-46	HDL implementation of flip-flop, registers and counters.						
47-48	Introduction to operational amplifiers., Block diagram representation of a typical						

Total

Total

Total Hours:

	Op-Amp, Equivalent Circuits of an Op-Amps, Ideal Voltage Transfer curve.
49-50	Open Loop Op-Amps Configurations.
51-52	Digital to Analog –Analog to Digital conversion using Op-Amps.

Review Questions:

	PART - A							
Q. No.	Questions	Marks	BLL	CO	PI			
i)	What is full adder? Write the expressions for sum and carry of full adder.	(02)	1	2	1.6.1			
ii)	Implement the expression $f = \sum m (1,2,5,6)$ using a decoder.	(02)	3	2	1.6.1			
iii)	Implement 4:1 MUX using 2:1 MUX only.	(02)	3	2	1.6.1			
iv)	Write symbol and truth table for gated SR latch.	(02)	2	4	1.6.1			
v)	Draw the circuit diagram for 4-bit circular shift register.	(02)	3	4	1.6.1			
	UNIT - III							
	IINIT - III							
2. a)	Draw a block diagram, write truth table for Full Subtractor, further simplify using Karnaugh map then implement it.	(07)	3	2	1.6.1			
b)	Draw a block diagram, write truth table for 2 bit magnitude comparator further simplify using Karnaugh map then implement it.	(08)	3	2	1.6.1			
	Implement the function $f(a, b, a, d) = \sum_{i=1}^{n} m_{i}$							
3. a)	(0,1,5,6,7,9,10,15) using 1. 8:1 MUX treat a, b and c as select lines. 2. 4:1 MUX treat a & b as select lines.	(07)	3	2	1.6.1			
b)	Draw the circuit diagram and write a truth table for SR latch then explain its working using all four possibilities.	(08)	2	4	1.6.1			

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	20	20
CIE-II	20	20
Assignments/ Quizzes/Case Study/ Course Project/Term Paper/Field Work	10	10
SEE	50	50
Total	100	100

Details of Assignment:

Assignment	Marks (10)	CO	PI	CA	РО
Assignment 1: Draw the Karnaugh Maps for the following Boolean functions. 1. F1 = a b + \overline{b} c + \overline{a} \overline{c} 2. F2 = (a + \overline{b}) (b + c)	2	1	i, ii	1	1,2
Assignment 2: Draw the K-Map and list out all the prime Implicants from the following Boolean expression. F = $\sum m(3, 4, 5, 7, 9, 13, 14, 15)$	2	2	lii, iv	2	3,4
Assignment 3: Find the minimal sum for the following Boolean expression using K-Map. F = $\Pi M (0, 1, 6)$	2	3	v, vi	2	5
Assignment 4: Design a circuit to square a two bits number.	2	4	vii, viii	3	6
Assignment 5: Design a system which accepts four inputs a, b, c and d and outputs a 1whenever the LSB or MSB goes high, assuming double rail logic.	2	5	іх	4	12

BASAVESHWAR ENGINEERING COLLEGE, BAGALKOTE

COURSE PLAN

Title of Course	:	Data Structures	Course Code	:	22UCS304C
Credits	:	03	Contact Hours/Week	:	02
Total Hours	:	52	Tutorial Hours	:	02
CIE Marks	:	50	SEE Marks	:	50
Semester	:	III	Year	:	2023-2024

1. Prerequisites: Strong Foundation in C Programming courses is essential to take up this course.

2. Course Objectives:

At the end of the course student will learn / understand / think / experience / appreciate / have insight / proficiency:

- 1 Advanced C features such as pointers and pointers application, dynamic memory allocation functions and recursion.
- 2 Foundations of data structure operations, design and implementation of data structures to organize data efficiently.
- 3 Designs and implementations of various data structures using abstract data types (ADTs) and without using abstract data types.
- 4 Analysis of variety of problems and selecting suitable data structures to develop the solutions.
- 5 Solving given problems using different data structures.

3. Course Outcomes:

	At the end of the course the student should be able to:
1	List and define concepts of pointers, dynamic memory allocation, recursion and data structures.
2	Explain advanced C features such as pointers, dynamic memory allocation, recursion and methods
	of implementing different data structures.
3	Implement of various data structures using abstract data type and without using ADTs
4	Analyze given problems and identify appropriate data structures to develop the solutions.
5	Solve problems using data structures to represent, organize and manipulate data for given problems.

4. **Course Articulation Matrix:** Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

			Program Outcomes(POs)								Program Specific Outcomes(PSOs)					
No.	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
The s	tudents will be able to:	·														
1	List and define concepts of pointers, dynamic memory allocation, and recursion and data structures.		2	2	2	2								3		2
2	<i>Explain advanced C features such as pointers, dynamic memory allocation, recursion and methods of implementing different data structures.</i>		2	2	2	2								2		2
3	Implement of various data structures using abstract data type and without using ADTs		3	3	3	3								3		3
4	Analyze given problems and identify appropriate data structures to develop the solutions.		3	3	3	3								3		3
5	Solve problems using data structures to represent, organize and manipulate data for given problems		3	3	3	3								3		3

5. Competencies Addressed in the course and Corresponding Performance Indicators

5.1 Programme Outcome: Any of 1 to 12 PO's:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO1. Engineering knowle	dge: Apply the knowledge of mathematics, science, engineering						
fundamentals, and an engineering specialization to the solution of complex engineering problems.							
Competency	Performance Indicators						
1.7 Demonstrate competence in specialized engineering knowledge to the program	1.7.1 Apply theory and principles of computer science and engineering to solve an engineering problem						

PO2. Problem analysis: *Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.*

Compotonov	Daufaumanaa Indiaataus					
Competency	reflormance indicators					
2.5 Demonstrate an ability	2.5.1 Evaluate problem statements and identifies objectives					
to identify and formulate	2.5.2 Identify processes/modules/algorithms of a computer-based					
complex engineering	system and parameters to solve a problem					
problem	2.5.3 Identify mathematical algorithmic knowledge that applies to a					
	given problem					
2.6 Demonstrate an ability	2.6.1 Reframe the computer-based system into interconnected					
to formulate a solution	subsystems					
plan and methodology for	2.6.2 Identify functionalities and computing resources.					
an engineering problem	263 Identify existing solution/methods to solve the problem					
	including forming justified approximations and assumptions					
	2.6.4 Compare and contrast alternative solution/methods to select the					
	best methods					
	2.6.5 Compare and contrast alternative solution processes to select the					
best process.						
2.7 Demonstrate an ability	2.7.1 Able to apply computer engineering principles to formulate					
to formulate and interpret a	modules of a system with required applicability and performance.					
model	2.7.2 Identify design constraints for required performance criteria.					
2.8 Demonstrate an ability	2.8.1 Applies engineering mathematics to implement the solution.					
to execute a solution	2.8.2 Analyze and interpret the results using contemporary tools.					
process and analyze results	2.8.3 Identify the limitations of the solution and sources/causes.					
	2.8.4 Arrive at conclusions with respect to the objectives.					
PO3. Design/development	of solutions: Design solutions for complex engineering problems and					
design system components	s or processes that meet the specified needs with appropriate					
consideration for the publ	ic health and safety, and the cultural, societal, and environmental					
considerations.						
Competency	Performance Indicators					
3.6 Demonstrate an ability	3.6.1 Able to explore design alternatives.					
to generate a diverse set of	3.6.2 Able to produce a variety of potential design solutions suited to					
alternative design solutions	meet functional requirements.					
	3.6.3 Identify suitable non-functional requirements for evaluation of					

6. Unit Learning Outcomes (ULO):

	Unit Learning Outcome (ULO)	CO	BLL	PI addressed
Unit I Unit II	 Able to describe and apply the knowledge of pointers, memory allocation functions, recursion concepts and Stack data structure to solve different applications. Select array or linked list ADT to implement of data structures to solve problems. Able to describe and apply the representation and organization of data using stack and queue data structures to solve different applications. Select array or linked list ADT to implement of data structures to 	1, 2, 3, 4, 5	1, 2, 3, 4, 5	$1.7.1, \\2.5.1, \\2.5.2, \\2.5.3, \\2.6.3, \\2.6.4, \\2.7.1, \\2.8.1, \\2.8.3, $
	solve problems.			3.6.1,

alternate design solutions.

Unit III	3. Able to describe and apply the representation and organization of data using general, circular and doubly linked list to solve different applications. Select linked list ADT to implement of data structures to solve problems.	3.6.2, 3.7.1, 4.4.2
Unit IV	4. Able to describe and apply the representation and organization of data using trees and graphs to solve different applications. Select linked list ADT to implement of data structures to solve problems.	

7. Course Content:

Hours	Topic to be covered	Mode of Delivery
	UNIT - I	
01	Revision on C programming Concepts	
01	Pointer applications: Arrays and pointers,	
01	Pointer arithmetic and arrays, passing an array to a function, Using	
	pointers to functions.	
01	Memory allocation functions, Array of pointers, pointers to void and	
	pointers to functions	
01	Recursion: iterative and recursive definition iterative and recursive	
	solution, designing recursive functions, limitations of recursion.	
01	Stacks: Basic stack operations: Push, Pop, Stack top,	Chalk and talk in
01	Stack linked list: Implementation, Data structure, Stack head, Stack	combined with
	data node, Stack algorithms,	discussions/Lecture with
01	Create Stack, Push Stack, Stack top, Empty Stack, Full Stack, Stack	a guiz/ Tutorial/
	count, Destroy Stack	Assignments/
01	Create Stack, Push Stack, Stack top, Empty Stack, Full Stack, Stack	Demonstration/
	count, Destroy Stack	/Asynchronous
01	C language implementations: Insert data, Push Stack, Print Stack,	Discussion
	Pop character	_
01	Stack ADT: Data structure, ADT Implementations, Stack structure,	
	Create stack, Push stack, Pop stack, Stack top, Empty stack, Stack	
0.1	count, Destroy stack	_
01	Stack ADI: Data structure, ADI Implementations, Stack structure,	
	Create stack, Push stack, Pop stack, Stack top, Empty stack, Stack	
0.1	count, Destroy stack	-
01	Stack Implementation using array	-
	UNIT H	
01	Stack applications: Poversing data: Poverse a list Convert decimal	
	to binary Infix to postfix transformation. Evaluating postfix	
	expressions	Chalk and talk in
01	Stack applications: Reversing data: Reverse a list Convert decimal	classroom/Lecture
V1	to binary. Infix to postfix transformation Evaluating postfix	combined with
	expressions	discussions/Lecture with
01	Oueues: Oueue Operations: Enqueue. Dequeue. Oueue front. Oueue	a quiz/ Tutorial/
	rear, Queue example,	Assignments/
01	Queues: Queue Operations: Enqueue, Dequeue, Queue front, Queue	Demonstration/
	rear, Queue example,	/Asynchronous
01	Queues: Queue Operations: Enqueue, Dequeue, Queue front, Queue	Discussion
	rear, Queue example,	
01	Queue Linked list design: Data structure, Queue head, Queue data	

	node, Oueue algorithms, Create queue, Enqueue, Dequeue, Retrieving	
	queue data. Empty queue. Full queue. Oueue count. Destroy queue	
01	Oueue Linked list design: Data structure. Oueue head. Oueue data	•
01	node Queue algorithms Create queue Engueue Dequeue Retrieving	
	queue data Empty queue Full queue Queue count Destroy queue	
01	Queue Linked list design: Data structure Queue head Queue data	-
01	noda Quana algorithma Creata guana Engueva Degueva Patrioving	
	node, Queue algorithins, Create queue, Enqueue, Dequeue, Ketheving	
01	Queue data, Empty queue, Fun queue, Queue count, Destroy queue	-
01	Queue ADT: Queue structure, Queue ADT algorithms, Queue	
0.1	Implementation using array,	-
01	Queue ADT: Queue structure, Queue ADT algorithms, Queue	
0.1	Implementation using array,	
01	Queue ADT: Queue structure, Queue ADT algorithms, Queue	
	Implementation using array,	-
01	Queue Applications	
01	Queue Applications	
	UNIT - III	
01	General Linear lists: Basic operations, Insertion, Deletion, Retrieval,	
	Traversal,	
01	General Linear lists: Basic operations, Insertion, Deletion, Retrieval,	
	Traversal,	
01	Implementation: Data structure, Head node, Data node, Algorithms,	
01	Implementation: Create list, Insert node, Delete node, List search,	Chalk and talk in
	Retrieve node.	classroom/Lecture
01	Implementation: Empty list Full list List count Traverse list Destroy	combined with
01	list	discussions/Lecture with
01	List ADT: ADT functions Create list Add node Internal insertion	a guiz/ Tutorial/
01	function	A ssignments/
01	List ADT: Sourch list Internal sourch function	Domonstration/
01	List ADT. Search list, internal search function,	
01	List ADT. Retrieve flode, Empty list Full list, List could	Discussion
01	Circular Finled Field and Deepler Finled Field Courts Field and the	Discussion
01	Circular linked lists and Doubly linked lists: Create list, add node,	-
01	Circular linked lists and Doubly linked lists: delete node	
01	Circular linked lists and Doubly linked lists: Create list, add node,	
	delete node, retrieve node, search list.	
01	Circular linked lists and Doubly linked lists: retrieve node, search	
	list.	
	UNIT - IV	1
01	Non-Linear lists: Trees: Basic tree concepts: Terminology, User	
	representation	
01	Binary trees: Properties, Height of binary trees, Balance, Complete	
	and Nearly complete binary trees	
01	Binary tree traversals: Depth-first traversals, Breadth-first traversals,	
01	Expression Trees : Infix traversal, Postfix traversal, Prefix traversal	
01	Expression Trees: Huffman code, General trees,	Chalk and talk in
01	Binary search trees: Basic concepts,	classroom/Lecture
	BST operations: Traversals. Searches	combined with
01	BST operations: Insertion Find the smallest and largest node.	discussions/Lecture with
01	BST operations: BST search Insertion Deletion	a quiz/ Tutorial/
01	Binary search tree ADT Data structure Head and node structure	Assignments/
	Algorithms Create a BST Insert a RST	Demonstration/
01	Internal insert function Dalata a DST Internal dalata function Dataiava	
01	a DST. Internal metricula function, Delete a DST, Internal delete function, Retrieve	Discussion
		1 11001100100

01	Traverse a BST, Empty a BST, Full BST, BST count, Destroy a BST,	
	Internal destroy function.	
01	Graphs: Basic concepts, Operations: Insert vertex, Delete vertex,	
	Add edge, Delete edge, Find vertex,	
01	Graph storage structures: Adjacency matrix, Adjacency list.	

8. Review Questions:

Review Questions	ULO	BLL	PI
			addressed
1. Define abstract data type.	1	1	1.7.1
2. Why data accessibility is not possible in ADT functions?	1	2	1.7.1
3. Consider the following declaration statements:	1	3	2.5.1
void* p;			
int number = 7 ;			
$\frac{10at}{V} \text{ price} = 23.5;$ Write C statements to print values of variable number and price using			
nointer p:			
4. Write DisplayStack function using only Stack ADT operations to print	1	3	4.4.1
contents of stack without changing the stack contents.	-		
5. What are basic operations of stack? Implement stack ADT operations	1	2	2.6.1
using linked list.			
6. Using only the operations of queue ADT, write an application called	2	3	3.5.1
CopyQueue that copies the contents of one queue to another.			
7. With the given traversals construct binary tree for the following.	4	4	5.6.2
i) Preorder: A B M H E O C P G J D K L I N F			
Inorder: H M C O E B A G P K L D I N J F			
ii) Postoder: F E C H G D B A			
Inorder: F C E A B H D G			
8. What is queue? Implement circular queue ADT operations using	2	2	2.5.1
array.			
9. Implement binary tree ADT with the following operations:	3	3	2.5.1
i) Insert new node			
i) Breadth First Traversal of tree			
iii) To find total number of leaves in a tree			
iv) To search an element			
10 Write a C program to create employee list Each node in the list should	3	3	251
have Employee Name Department and Designation date of joining		5	2.3.1
date of hirth salary and pointer to next employee. Write a function to			
insert an employee, delete an employee and display employee list for a			
given department			
11 Implement binery tree ADT with the following exerctions:	2	2	251
11. Implement offiary use AD1 with the following operations.	5		2.3.1
a. Insert new node			
D. Breadin First Traversal of tree			
c. To find total number of leaves in a tree			
d. To search an element			0.5.1
12. With the given traversals construct binary tree for the following.	4	4	2.5.1
a. Preorder: A B M H E O C P G J D K L I N F			
Inorder: H M C O E B A G P K L D I N J F			

b. Postoder: F E C H G D B A		
Inorder: F C E A B H D G		

9. Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	40	20
CIE-II	40	20
Assignments/ Quizzes/Case Study/ Course Project/ Term Paper/ Field Work	10	10
SEE	100	50
Total	100	100

10. Details of Assignment:

Assignment	Marks (10)	СО	PI	CA	РО
Assignment 1 – UNIT -I	10	1-4	$1.7.1, 2.5.1, \\2.6.3, 2.6.4, \\2.7.1, 2.8.1, \\2.8.3, 3.6.1,$	1.7, 2.5, 2.8, 3.6	PO -3
Assignment 2 – UNIT -I	10	1-5	$1.7.1, 2.5.1, \\2.6.3, 2.6.4, \\2.7.1, 2.8.1, \\3.6.2, 3.7.1, \\4.4.2$	1.7, 2.5, 2.8, 3.6	PO- 3 PO- 4
Assignment 3 – UNIT -I	10	1-5	1.7.1, 2.5.1, 2.8.1, 2.8.3, 3.6.1, 3.6.2, 4.4.2	1.7, 2.5, 2.8, 3.6, 4.4	PO-3 PO-4 PO-5
Assignment 4: UNIT -I	10	1-5	$1.7.1, 2.5.1, \\2.6.3, 2.6.4, \\2.7.1, 2.8.3, \\3.6.1, 3.7.1, \\4.4.2$	1.7, 2.5, 2.8, 3.6, 4.4	PO-4 PO-5

BASAVESHWAR ENGINEERING COLLEGE(AUTONOMOUS), BAGALKOT Department of Computer Science & Engineering

MODEL COURSE PLAN

Title of Course	:	Digital Systems	Course Code	:	22UCS301C
Credits	:	3	Contact Hours/ Week	:	3
Total Hours	:	40	Tutorial Hours	:	0
CIE Marks	:	50	SEE Marks	:	100
Semester	:	3	Year	:	2023-24

Prerequisites:

Basic Electronic Circuits, Number Systems, Boolean algebra and Logic Gates.

Course Objectives:

	The Course objectives are:
1	Make use of simplifying techniques in the design of combinational circuits.
2	Illustrate combinational and sequential digital circuits.
3	Demonstrate the use of flip flops.
4	Design and test registers and counters.
5	Implement the combinational and sequential circuits using Verilog/VHDL programming.

Course Outcomes:

	At the end of the course the student should be able to:
1	Demonstrate the understanding of Boolean algebra.
2	Describe the working of Combinational circuits.
3	Apply the Boolean theorems, K-Map, Q-M and VEM methods to simplify Boolean expressions.
4	Describe the working of Sequential circuits.
5	Simulate combinational and sequential circuits using HDL programming.

22UCS301C		Credits: 03
L:T:P - 3 : 0 : 0	Digital Systems	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I

UNIT-II

Boolean algebra and Combinational Circuits:

Boolean algebra definition, Principle of Duality, Boolean algebra theorems, Boolean formulas and functions, Normal forms. Minterm canonical form, m-notation, Maxterm Canonical form, M-notation. Manipulation of Boolean expressions. Gates and combinational circuits. Incomplete Boolean functions and don't care conditions, Additional Boolean operations and Gates.

Simplifications of Boolean Expressions:

Formulations of simplification problem, Prime Implicants and Irredundant disjunctive expressions, Prime implicates and Irredundant conjunctive expressions, Karnaugh maps, Using Karnaugh maps to obtain minimal expressions for complete Boolean functions, Minimal expressions of incomplete Boolean functions.

The Quine-McCluskey method of generating Prime Implicants and Prime Implicates, Decimal method for obtaining prime Implicants, Variable-Entered Karnaugh maps.

10 Hrs.

10 Hrs.

Logic Design with MSI Components and Programmable Logic Devices:

Binary adders and Subtractor, Decimal adders, Comparators, Decoders, Multiplexers. Programmable logic devices (PLDs), Programmable read only memories (PROMs), Programmable logic arrays (PLAs), Programmable array logics (PALs)

UNIT-IV

Flip-Flops and Applications:

The Basic Bistable Element: Lathes, Master-Slave flip-flops (Pulse-Triggered flip-flops), Edge triggered flop-flops, Characteristic equations.

Registers: Serial In Serial Out, Serial In Parallel Out Parallel in Parallel Out, Parallel In Serial Out, Circular, Universal Shift Registers.

Counters: Binary Ripple Counter, Synchronous Binary Counters, Mod and Ring counters. Design of Synchronous Counters.

10 Hrs.

UNIT-III

10 Hrs.

HDL implementations of combinational and sequential circuits.

Reference Books *

- 1. D. D. Givone, 8th Edition, 2017, "Digital Principles and Design", McGraw Hill.
- 2. R. D. Sudhakar Samuel, Revised Edition, 2005, "Logic Design A simplified approach", Sanguine Technical Publications.
- 3. Malvino, Leach and Saha, 6th Edition, 2007, "Digital Principles and applications", McGraw Hill.
- 4. McGraw Hill, 2nd Edition, 2002, "Fundamental of digital Logic with Verilog Design", McGraw Hill.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO1	PO2	PO3	PO4	PO5	PO6	РО 7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2	PSO3
No	Programme Outcomes Course Outcomes															
The	students will be able to:															
1	Demonstrate the understanding of Boolean algebra.	3	1	-	-	-	-	-	-	-	-	-	1	1	-	1
2	Describe the working of Combinational circuits.	2	1	-	-	-	-	-	-	-	-	-	1	1	-	1
3	Apply the Boolean theorems, K- Map, Q-M and VEM methods to simplify Boolean expressions.	2	-	-	-	-	-	-	-	-	-	-	1	1	-	1
4	Describe the working of Sequential circuits.	1	1	2	-	-	-	-	-	-	-	-	1	1	-	2
5	Simulate combinational and sequential circuits using HDL programming.	1	1	2	-	-	-	-	-	-	-	-	1	1	-	2

Competencies Addressed in the course and Corresponding Performance Indicators

Programme Outcome: Any of 1 to 12 PO's:

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

Competency	Indicators					
 Identify complex engineering problem 	i. Students should be able to identify problems that require Digital Systems.					
	 ii. Identify the domains where Digital Systems may be developed 					
Design a system and identify system requirements	 iii. Analysis of the problem, represent the knowledge iv. Encode the knowledge 					
	 v. Augment the knowledge vi. Analyze the complexity of the solution 					
 Consideration for public health, safety 	 vii. Designing systems for healthcare, cyber security and safety viii. Employ knowledge representation, search, inference, and reasoning abilities 					
 Cultural, societal and environmental considerations 	ix. Applying the DS for societal needs and environmental protection, especially the problems like conservation of water, conservation of forest, healthcare, telemonitoring, ensuring social and ethical responsibilities, like proctored conduction of examinations					

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Unit Learning Outcome (ULO)	CO	BLL	PI
			address
			ea
Demonstrate the understanding of Boolean algebra.	1,2	1,2,4	i, ii, iii,
			iv, v,
			and vi
Describe the working of Combinational and sequential circuits.	3	3,5	vii
Apply the Boolean theorems, K-Map, Q-M and VEM methods to	4	3,4	viii
simplify Boolean expressions.			
Simulate combinational and sequential circuits using HDL	5	2,6	ix
programming.			

Unit Learning Outcomes (ULO):

Course Content:

Unit-I Boolean algebra and combinational circuits. **Total Hours: 10**

Hours

Syllabus to be covered

No					
1-2	Boolean algebra- Definition, principle of duality, Boolean algebra theorems.				
3-4	Boolean algebra Boolean formulas and functions.				
5.6	Normal forms Canonical Formulas- Minterm canonical formula, m-notation. Maxterm				
3-0	canonical formula, M-notation.				
7-8	Manipulation of Boolean expressions.				
0.10	Gates and combinational networks. Incomplete Boolean functions and don't care				
9-10	conditions.				
11-12	Additional Boolean operations and gates.				
13	Introduction to HDL.				

Unit-II 13 Simplification of Boolean expressions.

Hours No	Syllabus to be covered			
14-15	Introduction to Karnaugh-maps.			
16-19	Use of Karnaugh-maps to minimize Boolean Expressions			
20	Minimal Expressions of Incomplete Boolean Functions.			
21-23	The Quine-McCliskey method of generating prime implicants and prime implicates			
24	Decimal method for obtaining prime implicants implicates.			
25-26	Variable Entered K-map			

Unit-III Hours: 13 Logic Design using MSI Components, Flip-Flops and applications.

Hours No	Syllabus to be covered		
27-29	Binary Adders and Substractor.		
30	Comparators.		
31-33	Decoders, Encoders and Multiplexers.		
34	Basic bistable elements.		
35-37	Latches and Master Slave Flip-Flops		
38	Edge Triggered Flip-Flops, Characteristic equations.		
39	HDL implementation of logic circuits.		

Unit-IV

Hours: 13 Registers, Counters, Operational Amplifiers and its Applications

Hours No	Syllabus to be covered			
40-41	Registers			
42-44	Counters, Design of synchronous counters.			
45-46	HDL implementation of flip-flop, registers and counters.			
47-48	Introduction to operational amplifiers., Block diagram representation of a typical			

Total

Total

Total Hours:

	Op-Amp, Equivalent Circuits of an Op-Amps, Ideal Voltage Transfer curve.
49-50	Open Loop Op-Amps Configurations.
51-52	Digital to Analog –Analog to Digital conversion using Op-Amps.

Review Questions:

	PART - A					
Q. No.	Questions	Marks	BLL	CO	PI	
i)	What is full adder? Write the expressions for sum and carry of full adder.	(02)	1	2	1.6.1	
ii)	Implement the expression $f = \sum m (1,2,5,6)$ using a decoder.	(02)	3	2	1.6.1	
iii)	Implement 4:1 MUX using 2:1 MUX only.	(02)	3	2	1.6.1	
iv)	Write symbol and truth table for gated SR latch.	(02)	2	4	1.6.1	
v)	Draw the circuit diagram for 4-bit circular shift register.	(02)	3	4	1.6.1	
	UNIT - III					
	IINIT - III					
2. a)	Draw a block diagram, write truth table for Full Subtractor, further simplify using Karnaugh map then implement it.	(07)	3	2	1.6.1	
b)	Draw a block diagram, write truth table for 2 bit magnitude comparator further simplify using Karnaugh map then implement it.	(08)	3	2	1.6.1	
	Implement the function $f(a, b, a, d) = \sum_{i=1}^{n} m_{i}$					
3. a)	(0,1,5,6,7,9,10,15) using 1. 8:1 MUX treat a, b and c as select lines. 2. 4:1 MUX treat a & b as select lines.	(07)	3	2	1.6.1	
b)	Draw the circuit diagram and write a truth table for SR latch then explain its working using all four possibilities.	(08)	2	4	1.6.1	

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	20	20
CIE-II	20	20
Assignments/ Quizzes/Case Study/ Course Project/Term Paper/Field Work	10	10
SEE	50	50
Total	100	100

Details of Assignment:

Assignment	Marks (10)	СО	PI	CA	РО
Assignment 1: Draw the Karnaugh Maps for the following Boolean functions. 1. F1 = a b + \overline{b} c + \overline{a} \overline{c}	2	1	i, ii	1	1,2
2. F2 = (a + b)(b + c)					
Assignment 2: Draw the K-Map and list out all the prime Implicants from the following Boolean expression.	2	2	lii, iv	2	3,4
F = ∑ m (3, 4, 5, 7, 9, 13, 14, 15)					
Assignment 3: Find the minimal sum for the following Boolean expression using K-Map. F = Π M (0, 1, 6)	2	3	v, vi	2	5
Assignment 4: Design a circuit to square a two bits number.	2	4	vii, viii	3	6
Assignment 5: Design a system which accepts four inputs a, b, c and d and outputs a 1whenever the LSB or MSB goes high, assuming double rail logic.	2	5	ix	4	12