21UMA300M		Mandatory - Credits (3 : (0:0)					
Hours / Week : 03	Bridge Course Mathematics-I	CIE Marks : 50						
Total Hours : 40		SEE Marks : 50						
		i						
		10	Hrs.					
Review of elementar angle between two of variable (without pr	us: ry calculus, Polar curves - angle between tl curves, pedal equation. Taylor's and Maclaur coof) problems	ne radius vector and tang in's series expansions for	gent, [.] one					
10 Hrs.								
Partial differentiation: Introduction to function of several variables, Partial derivatives; Euler's theorem - problems. Total derivatives-differentiation of composite functions. Jacobians-problems								
		10	Hrs.					
Multiple integrals: Evaluation of double and triple integrals. Area bounded by the curve. Beta and Gamma functions: Definitions, Relation between beta and gamma functions-problems.								
		10	Hrs.					
 divergence-physical interpretation; solenoidal and irrotational vector fields- problems References: Maurice D weir, Joel Hass and Frank R. Giordano, "Thomas calculus", Pearson, eleventh edition, 2011 B.S. Grewal : Higher Engineering Mathematics, Khanna Publishers, 44th Edition, 2017. B. V. Ramana: "Higher Engineering Mathematics" 11th Edition, Tata McGraw-Hill, 2010. Erwin Kreyszing's Advanced Engineering Mathematics volume1 and volume1I,wiley India Pvt.Ltd., 2014 								
 This course will enable 1. Enhance learn 2. Develop, under Mathematics. 3. Visualizing an between geom 4. Make our teace 	ole students to ning of Engineering Mathematics. erstanding, stimulate their interest, and incre nd representations: learners can see abstract netry and algebra. ching modules more active and improve the 1	ease their proficiency in concepts; make connecti learning outcomes of our	ions					

- **5.** Learn Engineering Mathematics conceptually and relationally in order to be able to apply, when they have learned.
- **6.** Create inquiry based learning and an opportunity to learn, practice.

Course Outcomes:

At the end of the course the student should be able to,

- 1. Apply the concepts of polar curves to solve Engineering problems
- 2. Apply the knowledge of partial differentiation to solve Engineering problems.
- 3. Apply the concepts of multiple integrals and their usage in computing the area and volumes.
- 4. Evaluate improper integrals using beta and gamma functions.
- 5. Apply the knowledge of differentiation of vectors to solve the engineering problems.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
No	Programme Outcomes Course Outcomes															
The	students will be able to:															
1	Apply the concepts of polar curves to solve Engineering problems	3	2													
2	Apply the knowledge of partial differentiation to solve Engineering problems.	3	2													
3	Apply the concepts of multiple integrals and their usage in computing the area and volumes.	3	2													

4	Evaluate improper integrals using beta and gamma functions.	3	2							
5	Apply the knowledge of differentiation of vectors to solve the engineering problems.	3	2							

Competencies Addressed in the course and Corresponding Performances Indicators Programme Outcomes: Any of 1 to 12 Po's:

Competency	Indicators
1.1Apply the knowledge of basic principles and	1.1.1 Apply the knowledge of polar curves in different engineering fields.
Mathematics to the solution of Engineering problems	1.1.2 Apply the knowledge of Partial differentiation to solve engineering Problems.
	1.1.3 Apply the knowledge of Multiple Integral, to solve engineering Problems.
	1.1.4 Apply the knowledge of beta and gamma functions in different engineering fields.
	1.1.5 Apply the concept of differentiation of vectors, to solve Engineering Problems.

Example: 1.2.3: Represents program outcome '1', competency '2', & performance indicator '3'

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Course	Programme Outcomes												
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	1	2											
CO2	1	2											
CO3	1	2											
CO4	1	2											
CO5	1	2											

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	40	20
CIE-II	40	20
Assignments/ Quizzes/Case Study/ Course Project/	10	10
Term Paper/Field Work		
SEE	100	50
Total	190	100

Question paper pattern for CIE-I and CIE-II:

- 1. Question paper consists Part-A and Part-B. Part A is compulsory, it consists of short answer questions of 1 or 2 marks, covering two units (no multiple choice questions and No true or false questions).
- 2. In Part-B, any TWO full questions are to be answered.

CIE	Number of questions / Maximum marks	Sub divisions	Contents
I	Four questions of 15 marks (Solve any two)	Sub divisions shall not be mixed with Differential Calculus & Partial differentiation	Differential Calculus
		Sub divisions shall not be mixed with Differential Calculus & Partial differentiation	Partial differentiation
П	Four questions of 15 marks (Solve any two)	Sub divisions shall not be mixed with Integral Calculus ,Beta and Gamma functions & Vector Differentiation	Integral Calculus & Beta and Gamma functions
		Sub divisions shall not be mixed with Integral Calculus ,Beta and Gamma functions & Vector Differentiation	Vector Differentiation

Question paper pattern for SEE:

- 1. Question paper consists Part-A and Part-B. Part A is compulsory, it consists of short answer questions of 1 or 2 marks, covering entire syllabus (no multiple choice questions and No true or false questions, 50% of questions must be L3 and L4 level).
- 2. In Part-B total eight questions, any FOUR full questions are to be answered. Uniformly covering the entire syllabus.
- 3. Each question carries 20 marks and should not have more than four subdivisions.

- 4. Sketches, figures and tables if any should be clearly drawn, as the same is scanned for printing.
- 5. The question paper should contain all the data / figures / marks allocated, with clarity.

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOT DEPARTMENT OF MATHEMATICS FIRST CIE (Model question Paper)

Course	: B.E	Semester	:111
Subject	: Bridge course Mathematics-I	Branch	:Common to all
Subject Code	: 21UMA300M	Max. Marks	: 40
Date:		Time	:

Note:P	Note:PART A: ALL questions are compulsory. PART B :Answer any TWO full question										
	PART-A	_									
Q. No.	Question	MAR KS	BL	CO	PI						
1. a.	Write the relationship between the Cartesian and polar coordinate systems.	2	L2	1	1.1.1						
b.	Define the angle between two polar curves.	2	L1	1	1.1.1						
c.	Define partial differentiation.	2	L3	1	1.1.2						
d.	If $u = \tan^{-1}\left(\frac{y}{x}\right)$, then find $\frac{\partial^2 u}{\partial y \partial x}$.	2	L2	2	1.1.2						
e.	Obtain the Maclaurin's expansion of $f(\mathbf{x}) = a^x$	2	L1	1	1.1.2						
	PART -B										
2. a.	Derive the angle between radius vector and the tangent to the curve $r = f(\theta)$ at any point P(r, θ) in the form $tan\phi = r \frac{d\theta}{dr}$.	5	L3	1	1.1.1						
b.	Find the angle between radius vector and the tangent to the curve $r = a (1-\cos\theta)$. Also find the slope of the curve at $\theta = \pi/6$.	5	L2	1	1.1.1						
c.	Show that the following curves intersect orthogonally $r = ae^{\theta} \& re^{\theta} = b$	5	L2	1	1.1.1						
3 a.	Find the angle of intersection of curves $r = \sin\Theta + \cos\Theta$ and $r = 2\sin\Theta$	5	L2	1	1.1.1						
b.	Find the pedal equation of the curve $r = a (1 + \cos \theta)$.	5	L2	1	1.1.1						

c.Obtain the Taylor's expansion of $\log_e x$ about $x = 1$ up to the term5L211.1.14. a. $z = x^3 - 3xy^2 + x + e^y \cos y + 1$, then show that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$ 5L221.1.1b.If $u = f(x + ct) + g(x - ct)$ prove that $u_{tt} = c^2 u_{xx}$ 5L121.1.2c. $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$ for the function $z = x \sin y + y \sin x$ 5L321.1.25. a. $I = \frac{x^2 + y^2}{x + y}$ then show that $\left[\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right]^2 = 4\left[1 - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right]$ 5L221.1.2b.If $z = f(x,y)$ where $x = e^u + e^{(x)}$ and $y = e^{(a)} - e^x$, then prove that $\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}$ 5L321.1.2c.If $z = f(x,y)$ where $x = e^u + e^{(x)}$ and $y = e^{(a)} - e^x$, then prove that $\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}$ 5L321.1.2c.Find the Jacobian of u, v, w with respect to x, y, z given $u = x + y + z$, $v = y + z$, $w = z$ 5L321.1.2						
4. a. $z = x^3 - 3xy^2 + x + e^y \cos y + 1$, then show that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$ 5L221.1.1b.If $u = f(x + ct) + g(x - ct)$ prove that $u_{tt} = c^2 u_{xx}$ 5L121.1.2c. $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$ for the function $z = x \sin y + y \sin x$ 5L321.1.25. a. $z = \frac{x^2 + y^2}{x + y}$ then show that $\left[\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right]^2 = 4\left[1 - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right]$ 5L221.1.2b.If $z = f(x, y)$ where $x = e^u + e^{(x)}$ and $y = e^{(u)} - e^v$, then prove that5L321.1.2c.Find the Jacobian of u, v, w with respect to x, y, z given $u = x + y + z$, $v = y + z$, $w = z$ 5L321.1.2	c.	Obtain the Taylor's expansion of $\log_e x$ about $x = 1$ up to the term containing 4 th degree and hence find $\log_e(1.1)$	5	L2	1	1.1.1
b. If $u = f(x + ct) + \overline{g(x - ct)}$ prove that $u_{tt} = c^2 u_{xx}$ 5L121.1.2 c. $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$ for the function $z = x \sin y + y \sin x$.5L321.1.2 5.a. $z = \frac{x^2 + y^2}{x + y}$ then show that $\left[\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right]^2 = 4 \left[1 - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right]$ 5L221.1.2 b. If $z = f(x,y)$ where $x = e^u + e^{(-v)}$ and $y = e^{(-u)} - e^v$, then prove that5L321.1.2 c. Find the Jacobian of u,v,w with respect to x,y,z given $u = x + y + z$, $v = y + z$, $w = z$ 5L321.1.2	4. a.	If $z = x^{3} - 3xy^{2} + x + e^{y} \cos y + 1, \text{ then show that } \frac{\partial^{2}z}{\partial x^{2}} + \frac{\partial^{2}z}{\partial y^{2}} = 0$	5	L2	2	1.1.1
c. $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$ for the function $z = x \sin y + y \sin x$.5L321.1.25. a. $z = \frac{x^2 + y^2}{x + y}$ then show that $\left[\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right]^2 = 4 \left[1 - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right]$ 5L221.1.2b.If $z = f(x,y)$ where $x = e^u + e^{(-v)}$ and $y = e^{(-u)} - e^v$, then prove that5L321.1.2 $\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y}$ 5L321.1.2c.Find the Jacobian of u,v,w with respect to x,y,z given $u = x + y + z, v = y + z, w = z$ 5L321.1.2	b.	If $u = f(x + ct) + g(x - ct)$ prove that $u_{tt} = c^2 u_{xx}$	5	L1	2	1.1.2
5. a. If $z = \frac{x^2 + y^2}{x + y}$ then show that $\left[\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right]^2 = 4 \left[1 - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right]$ 5. L2 2 1.1.2 b. If $z = f(x,y)$ where $x = e^u + e^{(-v)}$ and $y = e^{(-u)} - e^v$, then prove that $\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y}$. c. Find the Jacobian of u,v,w with respect to x,y,z given $u = x + y + z$, $v = y + z$, $w = z$ 5. L3 2 1.1.2	с.	Verify that $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$ for the function $z = x \sin y + y \sin x$.	5	L3	2	1.1.2
b. If $z = f(x,y)$ where $x = e^{u} + e^{(-v)}$ and $y = e^{(-u)} - e^{v}$, then prove that5L321.1.2 $\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = \mathbf{x} \frac{\partial z}{\partial x} - \mathbf{y} \frac{\partial z}{\partial y}$ c. Find the Jacobian of u,v,w with respect to x,y,z given $u = x + y + z$, $v = y + z$, $w = z$	5. a.	$z = \frac{x^2 + y^2}{x + y} then show that \left[\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} \right]^2 = 4 \left[1 - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} \right]$	5	L2	2	1.1.2
c. Find the Jacobian of u, v, w with respect to x, y, z given $u = x + y + z$, $v = y + z$, $w = z$ 5 L3 2 1.1.2	b.	If $z = f(x,y)$ where $x = e^{u} + e^{(-v)}$ and $y = e^{(-u)} - e^{v}$, then prove that $\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = \mathbf{x} \frac{\partial z}{\partial x} - \mathbf{y} \frac{\partial z}{\partial y}$	5	L3	2	1.1.2
	c.	Find the Jacobian of u,v,w with respect to x,y,z given $u = x + y + z$, $v = y+z$, $w = z$	5	L3	2	1.1.2

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOT DEPARTMENT OF MATHEMATICS Second- CIE (Model question Paper)

Course	: B.E	Semester	: III
Subject	: Bridge course Mathematics-I	Branch	: Common to all
Subject Code	: 21UMA300M	Max. Marks	: 40
Date:		Time	:

Note:F	ote:PART A: ALL questions are compulsory. PART B :Answer any TWO full question										
	PART-A										
Q. No.	Question	MAR KS	BL	СО	PI						
1. a.	Evaluate $\int_{0}^{1} \int_{0}^{1} dx dy.$	2	L2	3	1.1.2						

b.	$\int \int \int dz dx dy$	2	L1	3	1.1.2
	Evaluate 0 0 0				
c.	Define beta function	2	L3	4	1.1.2
d.	Define velocity of a vector function $\overset{\boxtimes}{r} = \overset{\cong}{f}(t)$	2	L2	3	1.1.3
e.	Define acceleration of a vector function $\overset{\boxtimes}{r} = \overset{\boxtimes}{f}(t)$	2	L1	4	1.1.5
	PART -B				
2. a.	Evaluate $\int_{0}^{1} \int_{0}^{1} x^{3}y dx dy$	5	L3	3	1.1.2
b.	Evaluate $\int_{0}^{1} \int_{0}^{x} (x+y) dy dx$	5	L2	3	1.1.2
c.	Evaluate $\int_{-c-b-a}^{c} \int_{-a}^{b} \int_{a}^{a} (x^{2} + y^{2} + z^{2}) dz dy dx$	5	L2	3	1.1.2
3 a.	$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$ Prove that	5	L2	4	1.1.2
b.	Prove that $\Gamma(1/2) = \sqrt{\pi}$	5	L2	4	1.1.2
c.	Evaluate $\int_{0}^{\pi/2} \sin^{5}\theta \cos^{7}\theta d\theta$	5	L2	4	1.1.3
4. a.	If $r(t) = (acost)i + (asint)j + (ct)k$, where a and c are scalar constants, then $\frac{dr}{dt}, \frac{d^2r}{dt^2} and \frac{d^3r}{dt^3}$	5	L2	5	1.1.3
b.	Find the unit tangent vector to the curve $\vec{r}(t) = (\cos t)i + (\sin t)j + (t)k$.	5	L1	5	1.1.3
с.	A particle moves along the curve $x = 1 - t^3$, $y = 1 + t^2$, $z = 2t - 5$. Determine Its velocity and acceleration. Find the components of velocity and acceleration at t = 1 in the direction of 2i +j +2k.	5	L3	5	1.1.3

5. a.	Find the directional derivative of the $\varphi = x^2 y z + 4 x z^2$ at (1, -2, -1) along $2i - j - 2k$.	5	L2	5	1.1.5
b.	Find Curl (Curl A) given that $A = xy i + y^2 z j + z^2 y k$.	5	L3	5	1.1.5
c.	Prove that $F = (6xy+z^3)I + (3x^2-z)j + (3xz^2-y)k$ is irrotational & find the scalar potential given $F = \nabla \varphi$.	5	L3	5	1.1.5

B.E. Third Semester End Examination, 2022-2023 SEE-Model Question paper

Course	: B.E	Semester	: III
Subject	: Bridge course Mathematics-I	Branch	: Common to all
Subject Code	: 21UMA300M	Max. Marks	: 100
Date:		Time	:
Duration	: 3 Hours		

Q.N	0.	Question	Marks	BLL	CO	PI
1	а	Write the relationship between the Cartesian and polar	2	L2	1	1.1.1
		coordinate systems.				
	b	Define the angle between two polar curves.	2	L1	1	1.1.1
	С	Define partial differentiation.	2	L3	1	1.1.2
	d	$\partial^2 u$	2	L2	2	1.1.2
		If $u = x^3 y^4$, then find $\overline{\partial y \partial x}$.				
	e	Obtain the Maclaurin's expansion of $f(\mathbf{x}) = a^x$	2	L1	1	1.1.2
	f	State Euler's theorem on homogeneous function.	2	L2	2	1.1.2
	g	Define beta function.	2	L1	4	1.1.2
	h	$\partial(\mathbf{x},\mathbf{y})$	2	L3	2	1.1.2
		If x = rcos Θ and y = rsin Θ then find $\partial(\mathbf{r}, \theta)$.				
	i	$\int \int dx dy.$	2	L2	3	1.1.3
		Evaluate ^{0 0}				
	j	Define velocity and acceleration of a vector function $\overset{\boxtimes}{r} = \overset{\cong}{f}(t)$	2	L1	5	1.1.4
2	а	Derive the angle between radius vector and the tangent to	6	L3	1	1.1.1
		the curve				
		$r = f(\theta)$ at any point P(r, θ) in the form $tan \phi = r \frac{d\theta}{dr}$.				

	b	Find the angle between radius vector and the tangent to the curve $r = a (1-\cos\theta)$. Also find the slope of the curve at $\theta = \pi/6$.	7	L2	1	1.1.1
	С	Show that the following curves intersect orthogonally $r = ae^{\theta} \& re^{\theta} = b$	7	L2	1	1.1.1
3	а	Find the angle of intersection of curves $r = \sin\Theta + \cos\Theta$ and $r = 2\sin\Theta$	6	L2	1	1.1.1
	b	Find the pedal equation of the curve $r = a (1 + cos \theta)$.	7	L2	1	1.1.1
	С	Obtain the Taylor's expansion of $\log_e x$ about $x = 1$ up to the term containing 4 th degree and hence find $\log_e(1.1)$	7	L2	1	1.1.1
4	а	If $u = \log(x^3 + y^3 + z^3 - 3xyz)$, show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x + y + z}$	6	L2	2	1.1.2
	b	If $u = f(x + ct) + g(x - ct)$ prove that $u_{tt} = c^2 u_{xx}$	7	L1	2	1.1.2
	С	if $x^{x}y^{y}z^{z} = c$, then show that $\frac{\partial^{2}z}{\partial x \partial y} = -(x \log ex)^{-1}$, at $x = y = z$.	7	L3	2	1.1.2
5	а	$z = \frac{x^2 + y^2}{x + y} \text{ then show that} \left[\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} \right]^2 = 4 \left[1 - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} \right]$	6	L2	2	1.1.2
	b	if $u = u(x-y, y-z, z-x)$ then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$	7	L3	2	1.1.2
	С	Find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ where $u = x^2 + y^2 + z^2$ $v = xy + yz + zx$, w = x + y + z	7	L3	2	1.1.2
6	а	Evaluate $\int_{0}^{1} \int_{0}^{1} x^{3}y dx dy$	6	L3	3	1.1.3
	b	Evaluate $\int_{0}^{1} \int_{0}^{x} (x+y) dy dx$	7	L2	3	1.1.3
	С	Evaluate $\int_{-c-b-a}^{c} \int_{a}^{b} \int_{a}^{a} (x^{2} + y^{2} + z^{2}) dz dy dx$	7	L2	3	1.1.3

7	а	$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{(n)}$	6	L2	4	1.1.4
		Prove that $\Gamma(m+n)$				
	b	Prove that $\Gamma(1/2) = \sqrt{\pi}$	7	L2	4	1.1.4
	С	$\frac{\pi}{2}$	7	L2	4	1.1.4
		$\int_{0} \sin^{3} \theta \cos^{\prime} \theta d\theta$				
8	a	If $r(t) = (acost)i + (asint)j + (ct)k$, where a and c are scalar	6	L2	5	1.1.5
		constants, then				
		find $\frac{dr}{dt}, \frac{d^2r}{dt^2}$ and $\frac{d^3r}{dt^3}$				
	b	Find the unit tangent vector to the curve	7	L1	5	1.1.5
		$\vec{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + (t)\mathbf{k}$				
	С	A particle moves along the curve	7	L3	5	1.1.5
		$x = 1 - t^3$, $y = 1 + t^2$, $z = 2t - 5$. Determine Its velocity and				
		acceleration. Find the components of velocity and				
9	a	Find the directional derivative of the $\varphi = x^2 y z + 4 x z^2$ at (1, -2, -1) along	6	L2	5	1.1.5
-		2i – j – 2k.	-		-	
	b	Find Curl (Curl A) given that $A = xy i + y^2 z j + z^2 y k$.	7	L3	5	1.1.5
	С	Prove that $F = (6xy+z^3)I + (3x^2-z)j + (3xz^2-y)k$ is irrotational & find the scalar potential given $F = \nabla \varphi$.	7	L3	5	1.1.5

21UMA301C	NUMEDICAL TECHNIQUES AN		03 - Credits (3 : 0 : 0)				
Hours / Week : 03	TRANSFORM	TRANSFORMS					
Total Hours : 40			SEE Marks : 50				
	UNIT – I		10 Hrs.				
Numerical Analysis-I Introduction to root finding problems, Bisection Method, Newton-Raphson method. Finite differences, forward and backward difference operators (no derivations on relations between operators) Newton-Gregory forward and backward interpolation formulae. (Without proof),							
	UNIT – II		10 Hrs.				
Numerical differentiation using Newton's forward and backward formulae-problems. Trapezoidal rule, Simpson's one third rule, Simpson's three eighth rule and Weddle's rule (no derivation of any formulae)-problems. Euler's and Modified Euler's method, Runge-Kutta 4 th order method.							
order method.							
order method.	UNIT – III		10 Hrs.				
Fourier series Periodic functio continuous and f range series, prac	UNIT – III ns, Conditions for Fourier series e functions having finite number of disc	expansions, Fourier ser continuities, even and od	10 Hrs. ies expansion of d functions. Half-				
Fourier series Periodic functio continuous and f range series, prac	UNIT – III ns, Conditions for Fourier series e functions having finite number of disc etical harmonic analysis. UNIT – IV	expansions, Fourier ser continuities, even and od	10 Hrs. ies expansion of d functions. Half- 10 Hrs.				
Fourier series Periodic functio continuous and f range series, prace Fourier transfor Infinite Fourier t Fourier cosine tr standard forms, 1	UNIT – III ns, Conditions for Fourier series e functions having finite number of disc etical harmonic analysis. UNIT – IV rms and z-transforms transforms and inverse Fourier transforms ansforms, Inverse Fourier sine and co inearity property, damping rule, shifting	expansions, Fourier ser continuities, even and od orms- simple properties, osine transforms. Z-tran ng rule-problems. Inverse	10 Hrs. ies expansion of d functions. Half- 10 Hrs. , Fourier sine and sforms-definition, e Z-transforms.				

Course Objectives:

- 1. To understand the numerical methods of solving algebraic, transcendental equations.
- 2. To acquired the knowledge about various methods of interpolation
- 3. To understand the basic concepts of numerical differentiation, numerical integration and numerical solutions of ordinary differential equations.
- 4. To understand concepts of Fourier series, Fourier transforms, and z-transforms.

Course Outcomes:

After completion of the course the students shall be able to,

- 1. Solve engineering problems using non-linear equations and interpolation techniques.
- 2. Solve problems using numerical differentiation and numerical integration.
- 3. Solve ordinary differential equations using numerical methods.
- 4. Solve Problems using the Fourier series.
- 5. Solve problems using the basic concepts of Fourier transforms and z -transforms.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
		1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
N 0	Programme Outcomes Course Outcomes															
Th	e students will be a	able 1	to:				-							-		
1	Solve engineering problems using non- linear equations and interpolation techniques.	3	2													
2	Solve problems using numerical differentiatio n and numerical integration.	3	2													
3	Solve ordinary differential equations using numerical methods.	3	2													
4	Solve Problems using the Fourier series.	3	2													
5	Solve problems using the basic concepts of Fourier transforms and z -transforms.	3	2													

Course Outcomes	Programme Outcomes											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	1	2										
CO2	1	2										
CO3	1	2										
CO4	1	2										
CO5	1	2										

Assessment	Marks	Weightage
CIE-I	40	20
CIE-II	40	20
Assignments/ Quizzes/Case Study/ Course Project/	10	10
Term Paper/Field Work		
SEE	100	50
Total	190	100

Question paper pattern for CIE-I and CIE-II:

Question paper consists Part-A and Part-B. Part A is compulsory, it consists of short answer questions of 1 or 2 marks, covering Unit-I and Unit-II (no multiple choice questions and No true or false questions).

1. In Part-B, four questions are to be set as per the following table.

CIE	Number of questions / Maximum marks	Sub divisions	Covering entire unit
Ι	Two questions of 15 marks (Solve any one)	Sub divisions shall not be mixed within the unit	Unit-I
	Two questions of 15 marks (Solve any one)	Sub divisions shall not be mixed within the unit	Unit-II
Π	Two questions of 15 marks (Solve any one)	Sub divisions shall not be mixed within the unit	Unit-III
	Two questions of 15 marks (Solve any one)	Sub divisions shall not be mixed within the unit	Unit-IV

Question paper pattern for SEE:

- 1. Question paper consists Part-A and Part-B. Question number 1 is compulsory, it consists of short answer questions of 1 or 2 marks, covering entire syllabus (no multiple choice questions and No true or false questions, 50% of questions must be L3 and L4 level).
- 2. In Part -B total of eight questions with two from each unit; with internal choice to be set uniformly covering the entire syllabus.
- 3. Each question carries 20 marks and should not have more than four subdivisions.
- 4. In Part-B, any FOUR full questions are to be answered choosing at least one from each unit.
- 5. Sketches, figures and tables if any should be clearly drawn, as the same is scanned for printing.
- 6. The question paper should contain all the data / figures / marks allocated, with clarity.

21UMA302C			03 - Credits (3 : 0 : 0)					
Hours / Week : 03	NUMERICAL TECHNIQUES SERIES	AND FOURIER	CIE Marks : 50					
Total Hours : 40	SERIES		SEE Marks : 50					
	UNIT – I		10 Hrs.					
Numerical Methods-I: Introduction to root finding problems, Newton-Raphson method. Finite differences, forward and backward difference operators (no derivations on relations between operators) Newton-Gregory forward and backward interpolation formulae. (Without proof), Lagrange's and Newton's divided difference interpolation formulae (without proof) Numerical differentiation using Newton's forward and backward formulae-problems.								
	UNIT – II		10 Hrs.					
Numerical Methods -II: Numerical Integration: Simpson's one third rule, Simpson's three eighth rule waddles' (no derivation of any formulae)-problems. Numerical solution of ODE: Taylors, Euler's and Modified Euler's method, Runge-Kutta 4 th order method, miles Predictor corrector method.								
	UNIT – III		10 Hrs.					
Fourier series: Periodic functions continuous and fun range series, practic	, Conditions for Fourier series ctions having finite number of dis cal harmonic analysis.	expansions, Fourie continuities, even a	er series expansion of nd odd functions. Half-					
	UNIT – IV		10 Hrs.					
Fourier transforms: Infinite Fourier transforms and inverse Fourier transforms- simple properties, Fourier sine and Fourier cosine transforms. Inverse Fourier sine and cosine transforms.								
 References: 1. Numerical Met 2. Higher Engined 3. Advanced Eng Nagar, New D 4. Advanced Eng 	 References: Numerical Methods for Engineers by Steven C Chapra & Raymond P Canale. Higher Engineering Mathematics by Dr. B.S. Grewal, Khanna Publishers, New Delhi. Advanced Engineering Mathematics By H. K. Das, S. Chand & company Ltd. Ram Nagar, New Delhi Advanced Engineering Mathematics by E Kreyszig , John Wiley & Sons. 							

Learning Objectives:

- 1. To understand the numerical methods of solving algebraic and transcendental equations.
- 2. To acquire the knowledge of interpolation techniques.
- 3. To understand the basic concepts of numerical differentiation, numerical integration and numerical solution of ordinary differential equations.
- 4. To understand concepts of Fourier series, and Fourier transforms.

Course Outcomes:

After completion of the course the students shall be able to,

- 1. Solve engineering problems using non-linear equations and interpolation techniques.
- 2. Solve problems using numerical differentiation and numerical integration.
- 3. Solve ordinary differential equations using numerical methods.
- 4. Solve Problems using the Fourier series.
- 5. Solve problems using the basic concept of Fourier transforms.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
		1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
	Programm															
	e															
Ν	Outcomes															
0	Course															
ТЪ	Outcomes	ill bo	abla	to												
11	le students w	III De	able	10:												
1	Solve engineering problems using non- linear equations and interpolatio n techniques.	3	2													
2	Solve problems using numerical differentiati on and	3	2													

	numerical integration.									
3	Solve ordinary differential equations using numerical methods.	3	2							
4	Solve Problems using the Fourier series.	3	2							
5	Solve problems using the basic concept of Fourier transforms.	3	2							

Course Outcomes	Programme Outcomes											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	1	2										
CO2	1	2										
CO3	1	2										
CO4	1	2										
CO5	1	2										

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	40	20
CIE-II	40	20
Assignments/ Quizzes/Case Study/ Course Project/Term Paper/Field	10	10
Work		
SEE	100	50
Total	190	100

Question paper pattern for CIE-I and CIE-II:

- 1. Question paper consists Part-A and Part-B. Part A is compulsory, it consists of short answer questions of 1 or 2 marks, covering Unit-I and Unit-II (no multiple choice questions and No true or false questions).
- 2. In Part-B answer any two full questions selecting at least one from each unit (four questions are to be set as per the following table).

CIE	Number of questions / Maximum marks	Sub divisions	<mark>Unit</mark>
I	Two questions of 15 marks(Solve any one)	Sub divisions shall not be mixed within the unit	Unit-I
	Two questions of 15 marks (Solve any one)	Sub divisions shall not be mixed within the unit	Unit-II
II	Two questions of 15 marks (Solve any one)	Sub divisions shall not be mixed within the unit	Unit- III
	Two questions of 15 marks (Solve any one)	Sub divisions shall not be mixed within the unit	Unit- IV

Question paper pattern for SEE:

- 1. Question paper consists Part-A and Part-B. Part-A is compulsory, it consists of short answer questions of 1 or 2 marks, covering entire syllabus (no multiple choice questions and No true or false questions, 50% of questions must be L3 and L4 level).
- 2. In Part-B total of eight questions with two from each unit; with internal choice to be set uniformly covering the entire syllabus.
- 3. Each question carries 20 marks and should not have more than four subdivisions.
- 4. In Part-B, any FOUR full questions are to be answered choosing at least one from each unit.
- 5. Sketches, figures and tables if any should be clearly drawn, as the same is scanned for printing.
- 6. The question paper should contain all the data / figures / marks allocated, with clarity.

	21UMA303C			03 - Credits (3 : 0 : 0)								
	Hours / Week : 03	Computation Techniques fo	r Electrical System -	CIE Marks : 50								
	Total Hours : 40			SEE Marks : 50								
	U	NIT – I		10 Hrs.								
	ntroduction:											
	on signals. Properties of systems, classification of signals, Elementary signals, Basic operations											
0	INIT – II 10 Hre											
т	UNIT – II 10 Hrs.											
	onvolution Impulse re	snonse representation Pron	erties of impulse res	nonse representation								
B	lock diagram represent	ations		ponse representation,								
	UN	IIT – III		10 Hrs.								
z	-Transforms:											
h	ntroduction, Z transfor	rm, Properties of ROC, Pro	perties of the Z - t	ransform, Inverse Z -								
t	ransform, Partial fractio	on expansion method, Transf	er function, Causality	[,] and Stability								
	UNIT – IV 10 Hrs.											
F II II F	ntroduction, Propertie quations for CTFS), Integration, Convolution ourier series and Fourie	s of continuous-time Fourie Linearity, Time shift, Frequent and Modulation, Parseval's Per transform.	er series (Excluding uency shift, Scaling s theorem and prob	derivation of defining ;, Differentiation and lems on properties of								
R	eferences:											
	1. Simon Haykin and Edition, 2014.	Bary Vam Veen, "Signals a	nd Systems," John \	Niely and Sons, 2^{M}								
	2. H P HSU, "Signals ar	nd Systems," Schaums Outline	e, TMH, 2 [™] Edition, 2	011.								
	 Michael Roberts, "Fundamentals of Signals & Systems", 2nd Edition, Tata McGraw-Hill, 2010 											
	4. Alan V Oppenheim, Education Asia / PH	Alan S, Willsky and A Hamid I, 2 [™] Edition, 2013.	Nawab, "Signals and	d Systems" Pearson								
	5. Ganesh Rao, Satis Edition, 2020.	h Tunga, "Signals and Syst	ems", Sanguine Teo	chnical Publishers, 2 nd								

Course Outcomes:

After completion of the course the students shall be able to,

- 1. Represent signals and perform the basic operations on signals and to identify systems properties on causality, stability, memory, linearity and time invariance (BLL 1)
- 2. Illustrate- Continuous time systems and discrete time system by performing Convolution in LTI system with properties of impulse response (BLL 2)
- 3. Analyze and Derive the Z transforms and properties of Z transform by using the concept of ROC (BLL 3)
- 4. Determine Fourier series and properties of Fourier series in CTFS and CTFT signals (BLL 4)

SI.	Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	Students shall be able to Represent signals and perform the basic operations on signals and to identify systems properties on causality, stability memory, linearity, and time invariance.	2	3										1
2	Students shall be able to illustrate Continuous time system and discrete time system by performing Convolution in LTI system and with properties of impulse response.	3	1	2	1								1
3	Students shall be able to Analyze and Derive the Z transforms and properties of Z transform by using the concept of ROC.	3	3	1	1								1
4	Students shall be able to Determine Fourier series and properties of Fourier series in CTFS signals.	3	3	2	2								1
5	Students shall be able to Determine Fourier series and	3	3	2	2								1

Course Outcomes - Programme Outcomes Mapping Table

properti	es of Fourier series in						
CTFT sig	nals.						

Course Outcomes	Programme Outcomes											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	3										1
CO2	3	1	2	1								1
CO3	3	3	1	1								1
CO4	3	3	2	2								1
CO5	3	3	2	2								1

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	40	20
CIE-II	40	20
Assignments/ Quizzes/Case Study/ Course Project/	10	10
Term Paper/Field Work		
SEE	100	50
Total	190	100

Question paper pattern for CIE-I and CIE-II:

Question paper consists Part-A and Part-B. Part A is compulsory, it consists of short answer questions of 1 or 2 marks, covering Unit-I and Unit-II (no multiple choice questions and No true or false questions).

1. In Part-B, four questions are to be set as per the following table.

CIE	Number of questions / Maximum	Sub divisions	Covering entire
	marks		unit
	Two questions of 15 marks	Sub divisions shall not be mixed	Unit-I
Ι	(Solve any one)	within the unit	
	Two questions of 15 marks (Solve any one)	Sub divisions shall not be mixed within the unit	Unit-II
II	Two questions of 15 marks (Solve any one)	Sub divisions shall not be mixed within the unit	Unit-III
	Two questions of 15 marks (Solve any one)	Sub divisions shall not be mixed within the unit	Unit-IV

Question paper pattern for SEE:

- 1. Question paper consists Part-A and Part-B. Question number 1 is compulsory, it consists of short answer questions of 1 or 2 marks, covering entire syllabus (no multiple choice questions and No true or false questions, 50% of questions must be L3 and L4 level).
- 2. In Part-B total of eight questions with two from each unit; with internal choice to be set uniformly covering the entire syllabus.
- 3. Each question carries 20 marks and should not have more than four subdivisions.
- 4. In Part-B, any FOUR full questions are to be answered choosing at least one from each unit.
- 5. Sketches, figures and tables if any should be clearly drawn, as the same is scanned for printing.
- 6. The question paper should contain all the data / figures / marks allocated, with clarity.

21UMA400M		Mandatory - Cre	dits (3 : 0 : 0)
Hours / Week : 03	Bridge Course Mathematics-II	CIE Mark	as : 50
Total Hours : 40		SEE Mark	ks : 50
_			
			10 Hrs.
Differential Equations-1 Ordinary different reducible to exact different	: ential equations of first order: Variable separable, Ho tial equations. Linear and Bernoulli's equation.	omogeneous. Exact f	orm and
			10 Hrs.
Differential Equations-2 Second and high variation of parameters (se	er order linear ODE's with constant coefficients-Inve econd order); Cauchy's and Legendre homogeneous e	erse differential opera quations.	ator, method of
			10 Hrs.
Laplace Transform: Introduction, Shifting, differentiation, In	Definition of Laplace Transform, Laplace Transforn ntegral and division by t. Periodic function, Heaviside	n of standard function s's Unit step function	ons, Properties:
			10 Hrs.
Inverse Laplace transfor Properties, Convo	ms: lution theorem-problems, Solutions of linear different	tial equations.	
 B.S. Grewal : Hig Erwin Kreyszing 2014. Elementary Diffe Erwin Kreyszing 	gher Engineering Mathematics, Khanna Publishers, 4- s's Advanced Engineering Mathematics volume I ar erential Equations by Earl D. Rainville and Phillip E, 1 s's Advanced Engineering Mathematics, wiley India Pa	4 th Edition, 2017. nd volume II, wiley Bedient, Sixth Editio /t.Ltd.,2014.	India Pvt.Ltd., n
Course Objectives: This course will enable stu1. Enhance learning2. Study basic concernance	udents to g of Engineering Mathematics. epts of differential equations and Laplace transforms		
Course Outcomes: At the end of the course th 1. Solve first order first d 2. Solve second and high 3. Apply Laplace transfor 4. Apply Inverse Laplace 5. Solve differential equa	the student should be able to, legree differential equations. er order linear differential equations. rms for standard functions and its properties transforms for standard functions tions using Laplace transform method.		

(For students admitted to II year in 2022-23, common to all branches)

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO2	PS O3
No	Programme Outcomes Course Outcomes															
The	e students will be able to:															
1	Solve first order first degree differential equations.	3	2													
2	Solve second and higher order linear differential equations.	3	2													
3	Apply Laplace transforms for standard functions and its properties	3	2													
4	Apply Inverse Laplace transforms for standard functions	3	2													
5	Solve differential equations using Laplace transform method.	3	2													

Competencies Addressed in the course and Corresponding Performances Indicators Programme Outcomes: Any of 1 to 12 Po's:

Competency	Indicators
1.1Apply the knowledge of basic principles and Mathematics to the solution of Engineering problems	1.1.1 Apply the knowledge first order first degree differential equations in different engineering fields.
solution of Engineering problems	1.1.2 Apply the knowledge of second and higher order linear differential equations to solve engineering Problems.
	1.1.3 Apply the knowledge of Laplace transforms, to solve engineering Problems.
	1.1.4 Apply the knowledge of Inverse Laplace transforms in different engineering fields.
	1.1.5 Apply the concept of Laplace transforms, to solve differential equations.

Example: 1.2.3: Represents program outcome '1', competency '2', & performance indicator '3'.

PO1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Course	Programme Outcomes											
s	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2										
CO2	3	2										
CO3	3	2										
CO4	3	2										
CO5	3	2										

Evaluation Scheme:

Assessment	Marks	Weightage
------------	-------	-----------

(For students admitted to II year in 2022-23, common to all branches)

CIE-I	40	20
CIE-II	40	20
Assignments/ Quizzes/Case Study/ Course Project/Term Paper/Field Work	10	10
SEE	100	50
Total	190	100

Question paper pattern for CIE-I and CIE-II:

- 1. Question paper consists Part-A and Part-B. Part A is compulsory, it consists of short answer questions of 1 or 2 marks, covering two units (no multiple choice questions and No true or false questions).
- 2. In Part-B, any TWO full questions are to be answered.

CIE	Number of questions / Maximum marks	Sub divisions	Contents
I	Four questions of 15 marks (Solve any two)	Sub divisions shall not be mixed with Differential equations-1 and Differential equations-2	Differential Equations-1
		Sub divisions shall not be mixed with Differential equations-1 and Differential equations-2	Differential Equations-2
ш	Four questions of 15 marks (Solve any two)	Sub divisions shall not be mixed with Laplace Transform and Inverse Laplace transform	Laplace Transform
		Sub divisions shall not be mixed with Laplace Transform and Inverse Laplace transform	Inverse Laplace Transform

Question paper pattern for SEE:

- 1. Question paper consists Part-A and Part-B. Question number 1 is compulsory, it consists of short answer questions of 1 or 2 marks, covering entire syllabus (no multiple choice questions and No true or false questions, 50% of questions must be L3 and L4 level).
- 2. In Part-B total of eight questions with two from each unit; with internal choice to be set uniformly covering the entire syllabus.
- 3. Each question carries 20 marks and should not have more than four subdivisions.
- 4. In Part-B, any FOUR full questions are to be answered.

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOT DEPARTMENT OF MATHEMATICS FIRST CIE (Model question Paper)

Course	: B.E	Semester	:IV						
Subject	: Bridge course Mathematics-II	Branch	:Common to all						
Subject Code	: 21UMA400M	Max. Marks	:40						
Duration :	1 ½ Hour	Time	:						

Q.	Question	Marks	BL	со	PI
NO					
	PART-A				
	Answer all Questions				
1 a	From the following ordinary differential equation write the order and degree	02	L3	2	1.1. 2
	i) $\frac{d^3 y}{dx^3} + 5\left(\frac{d^2 y}{dx^2}\right) + \left(\frac{dy}{dx}\right)^3 = \sin x$				
	(ii) $\frac{d^2x}{dt^2} + \omega^2 x = 0$				
b	Verify $x^2 y dx - (x^3 + y^3) dy = 0$. is it an exact	02	L3	1	1.1. 1
	differential equation or not.				
С	(dy/dx)+P y = Q , is it linear in y ,if your answer yes , what is the integrating factor.	02	L3	1	1.1. 1
d	If $\pm 2i$ and $2,3$ are the roots of a given differential equation then what is the Complementary Function.	02	L3	2	1.1. 2
e	If $D^2 - 4D + 4 = e^{2x}$ where D=d/dx, then Particular Integral of this equation is	02	L3	2	1.1. 2
	PART-B				
	Answer Any Two full Questions				
2 a	Solve $dy/dx = (x - 1)(y - 2)$	05	L2	1	1.1. 1
b	Solve $dy/dx = (1-y/x)/(1+y/x)$	05	L2	1	1.1. 1

С	(2r+v+1)dr+(r+2v+1)dv=0	05	12	1	4.4
	Solve $(2x + y + 1)ax + (x + 2y + 1)ay = 0$		LZ	Ţ	1.1.
3а	Solve $x dy - y dx = 0$	05	L2	1	1.1. 1
b	Solve $\frac{dy}{dx} + y \cot x = \cos x.$	05	L2	1	1.1. 1
С	Solve $y' + 4 x y = x^3 y^2$	05	L2	1	1.1. 1
4 a	Solve $y'' - 9y = e^{2x}$	05	L3	1	1.1. 1
b	Solve $y^{(3)}-5y''-22y'+56 y = 0$	05	L3	1	1.1. 1
С	Solve $y^{(4)} + 16 y = 0$	05	L2	2	1.1. 2
5 a	Solve $y'' + y = \sec x$ by the method of variation of parameters.	05	L3	1	1.1. 1
b	Solve $x^2 y'' - 6xy' - 18y = 0$ by Cauchy method	05	L3	2	1.1. 2
С	Solve $(1-x^2)d^2y/dx^2 - 2x dy/dx + 6y = 0$ by Legendres method	05	L3	2	1.1. 2

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOT DEPARTMENT OF MATHEMATICS Second CIE (Model question Paper)

Course	: B.E	Semester	: IV
Subject	: Bridge course Mathematics-II	Branch	: Common to all
Subject Code	: 21UMA400M	Max. Marks	: 40
Duration :	1 ½ Hour	Time	:

Q. No	Question	Marks	BL	со	PI
	PART-A Answer all Questions				
1 a	Define Laplace Transform	02	L1	3	1.1. 3
b	Find L(2000)	02	L1	3	1.1. 3
С	Find $L\left[e^{at}\right]$	02	L2	3	1.1. 3
d	Find $L^{-1}\left[\frac{1}{s^3}\right]$	02	L2	4	1.1. 4
e	Find $L^{-1}\left[\frac{e^{-3s}}{s^5}\right]$	02	L2	4	1.1. 4
	PART-B				
	Answer Any Two full Questions				
2 a	Find the Laplace Transform of $2 + 5t^3 + 4e^{-3t} + 10e^t + \sin 2t$	05	L2	3	1.1. 3

(For students admitted to II year in 2022-23, common to all branches)

b	Find $L{f(t)}$ where $f(t) = \cos at \cos bt$	05	L2	3	1.1. 3
С	Find $L\left\{\sin 2t.\cos 3t\right\}$	05	L2	3	1.1. 3
3 a	Find $L\left\{\frac{e^{-at}-e^{-bt}}{t}\right\}$	05	L2	3	1.1. 3
b	Find $L[e^{-2t}\sinh 4t]$	05	L2	3	1.1. 3
С	Find $L[t^3 \cosh t]$.	05	L2	3	1.1. 3
4 a	Find $L^{-1}\left[\frac{s+2}{s^2+36} + \frac{4s-1}{s^2+25}\right]$	05	L3	4	1.1. 4
b	Find $L^{-1}\left[\frac{1+e^{-3s}}{s^2}\right].$	05	L3	4	1.1. 4
С	Find $L^{-1}\left[\frac{s}{(s^2 + a^2)^2}\right]$.	05	L2	4	1.1. 4
5 a	Compute the inverse Laplace transform of 1/ (s+2)(s-3).	05	L3	4	1.1. 4
b	Evaluate $L^{-1}\left\{\frac{s}{\left(s^2+a^2\right)^2}\right\}$ by applying convolution theorem.	05	L3	4	1.1. 4
С	Employ Laplace transform to solve the equation $y''+5y'+6y=5e^{2x}$, $y(0)=2$, $y'(0)=1$.	05	L3	5	1.1. 5

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOT DEPARTMENT OF MATHEMATICS Semester End Examination (Model question Paper)

Course	: B.E	Semester	: IV
Subject	: Bridge course Mathematics-II	Branch	: Common to all
Subject Code	: 21UMA400M	Max. Marks	: 100
Duration :	3 Hour	Time	:

Q.No.	Question	Marks	BL	CO	PI
	PART A. COMPLIE SORV Answer all questions		L		
1. a.	From the following ordinary differential equation write the order and	2	L2	2	1.1.2
	degree			_	
	13 (12) $(1)^3$				
	$\frac{d^{2}y}{d^{2}y} + 5\left(\frac{d^{2}y}{d^{2}y}\right) + \left(\frac{dy}{d^{2}y}\right) = \sin x$ $d^{2}x + \alpha^{2}x = 0$				
	$ \int_{\text{ii}} dx^3 = \left(\frac{dx^2}{dx^2} \right) \left(\frac{dx}{dx} \right) $ (ii) $\frac{dt^2}{dt^2} + \omega x = 0$				
h	dy . D. O	2	L2	1	111
	$\frac{d}{dx} + Py = Q$ what is the integrating factor of the given equation.	-		-	
			1.0	1	111
c.	Verify $x^2y dx - (x^3 + y^3) dy = 0$.	2	LZ	1	1.1.1
	is it all exact unrerential equation of				
	not.				
d			12	2	112
a.	Solve: $(D^2 + 6D + 9)y = 0$	2	LS	2	1.1.2
e.	Write the Particular Integral solution of $y'' + 2y' + y = e^{2x}$	2	L3	2	1.1.2
f.	Find L (900000)	2	L2	3	1.1.3
g.	$L[\cos 2x] = L[\sinh 3x]$	2	L2	3	1.1.3
	Find E[cos 2x] and E[shift 5x]				
h.	Compute the inverse Laplace transform of (-2/5) (1/(s-(3/5))).	2	L2	4	1.1.4
1.	Find $L^{-1}\left\{\frac{3}{2z+5}\right\}$	2	L3	4	1.1.4
j.	Compute the inverse Laplace transform of $(s/(s^2+4))$.	2	L2	4	1.1.4
	PART-B Answer any FOUR full questions choosing at least one from each unit				
	Answer any FOOR fun questions choosing at least one nom each unit.				
2. a.	Solve : $dy/dx = (x - 1)(y - 2)$	6	L2	1	1.1.1
b.	Solve: $dy/dx = (1-y/x)/(1+y/x)$	7	L3	1	1.1.1
c.	Solve : $(2x + y + 1) dx + (x + 2y + 1) dy = 0$	7	L3	1	1.1.1
3 0		6	1.2	1	1 1 1
J. а. ь	Solve : $x dy - y dx = 0$	0		1	1.1.1
υ.	$\frac{dy}{dt} + y \cot x = \cos x.$		LЭ	1	1.1.1
	Solve : dx				
c.	Solve : $y' + 4 x y = x^3 y^2$	7	L2	1	1.1.1
4. a.	$d^3 y d^2 y dy$	6	L3	2	1.1.2
	$\frac{a y}{a^3} + \frac{a y}{a^2} + 4\frac{a y}{a} + 4y = 0.$				
	Solve: dx^2 dx^2 dx				
b.	Solve $(D^3 + 4D)y = sin2x$	7	L3	2	1.1.2
c.	Solve $(D^4 - 1)y = e^x cosx$	7	L3	2	1.1.2
				L	

(For students admitted to II year in 2022-23, common to all branches)

			1		
5. a.	Solve by the method of variation of parameters $y''-6y'+9y=\frac{e^{3x}}{x^2}$.	6	L3	2	1.1.2
b.	Solve: $x^{2} \frac{d^{2} y}{dx^{2}} - x \frac{dy}{dx} + y = \log x$	7	L3	2	1.1.2
c.	Solve $(1+x)^2 \frac{d^2 y}{dx^2} + (1+x)\frac{dy}{dx} + y = 2\sin[\log(1+x)]$	7	L3	2	1.1.2
6. a.	Find $L{f(t)}$ where $f(t) = \cos at \cos bt$.	6	L2	3	1.1.3
b.	Find $L{f(t)}$, if $f(t)=e^{3t}.\sin^2 t$				
c.	Find $L\left\{\frac{e^{-at}-e^{-bt}}{t}\right\}$.	7	L3	3	1.1.3
7. a.	Evaluate : $\int_{0}^{\infty} e^{-3t} t \sin t dt$.	6	L3	3	1.1.3
b.	If $f(t)=t^2$, $0 < t < 2$ and $f(t+2) = f(t)$ for $t > 2$. Find $L \{ f(t) \}$.	7	L2	3	1.1.3
c.	$f(t) = \begin{cases} 1 & 0 < t \le 1 \\ t & 1 < t \le 2 \\ t^2 & t > 2 \end{cases}$ in terms of unit step functions and hence determine Laplace transform		L2	3	1.1.3
8. a.	Find $L^{-1}\left\{\frac{2s}{s^2+9}\right\}$	6	L2	4	1.1.4
b.	Find $L^{-1}\left\{\frac{1}{s^2+2s+5}\right\}$.	7	L3	4	1.1.4
c.	Find $L^{-1}\left\{\log\left(\frac{s+a}{s+b}\right)\right\}$	7	L3	4	1.1.4
9. a.	Find the inverse Laplace transform of the following function $f(s) = \frac{4s^5 + 6s^2 + 10s + 1}{s^6}$	6	L2	4	1.1.4
b.	$L^{-1}\left\{\frac{s}{(-2)-2\lambda^2}\right\}$	7	L3	4	1.1.4
с.	Evaluate $(\{s^{*}+a^{*}\})$ by applying convolution theorem.Solve by the method of Laplace transforms the equation	7	L3	5	1.1.5

(For students admitted to II year in 2022-23, common to all branches)

y'' + 2y' - y' - 2y = 0 given $y(0) = y'(0) = 0$ and		
y"(0) = 6		

21UMA401C		03 - Credits	(3:0:0)		
Hours / Week : 03	Statistics and Probability Distributions	CIE Mark	s : 50		
Total Hours : 40		SEE Mark	s : 50		
	UNIT – I		10 Hrs.		
Statistics:					
Curve fitting by the meth	hod of least squares: $y = a + bx$, $y = ab^x$, $y = a$	$+bx+cx^2$ Cor	relation,		
expression for the rank c	orrelation coefficient and regression.	-			
-					
	UNIT – II		10 Hrs.		
Probability: addition ru	le, conditional probability, multiplication rule	e, Baye's rule.	Discrete and		
continuous random var	Tables-Probability density function, Cumula	ative distribution	on function,		
Problems on expectation			10.11		
Duchability distribution	UNII – III		10 Hrs.		
Rinomial distributions P	oisson distributions and Normal distributions	Concent of join	t probability		
Joint probability distribut	tions.	concept of join	it probability,		
	UNIT – IV		10 Hrs.		
Introduction, Probabili Matrices, Markov chains chains and absorbing stat	ty vectors, Stochastic Matrices, Fixed Points, higher transition probabilities, stationary discuss.	nts and Regula stribution of reg	ar stochastic gular Markov		
 References: 1. Numerical Methods for Engineers by Steven C Chapra & Raymond P Canale. 2. Higher Engineering Mathematics by Dr. B.S. Grewal, Khanna Publishers, New Delhi. 3. Advanced Engineering Mathematics By H. K. Das, S. Chand & company Ltd. Ram Nagar, New Delhi 4. Advanced Engineering Mathematics by E Kreyszig ,John Wiley & Sons. 5. Probability and stochastic processes by Roy D. Yates and David J. Goodman, wiley India pvt.ltd 2nd edition 2012. 6. Theory and problems of probability by Seymour Lipschutz (Schaum's Series). 					
 Course Objectives: 1. To apply the knowledge of Statistics in various Engineering fields 2. To be acquired knowledge about predictions preferably on the basis of mathematical equations 3. To be understand the principal concepts about probability 					

(For students admitted to I year in 2021-22, CS, IS, AIML and EC)

Course Outcomes:

After completion of the course the students shall be able to,

- 1. Apply the least square sense method to construct the specific relation for the given group of data.
- 2. Solve problems on correlation and regression
- 3. Apply the concepts of probability
- 4. Apply the concepts of probability distributions
- 5. Apply the concept of Markov Chain for commercial and industry purpose.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
No	Programme Outcomes Course Outcomes															
The students will be able to:																
1	Apply the least square sense method to construct the specific relation for the given group of data.	3	2													
2	Solve problems on correlation and regression	3	2													
3	Apply the concepts of probability	3	2													
4	Apply the concepts of probability distributions	3	2													
5	Apply the concept of Markov Chain for commercial and industry purpose.	3	2													

(For students admitted to I year in 2021-22, CS, IS, AIML and EC)

Trogramme Outcome. Any of 1 to 12 1 O S.		
Competency		Indicators
1.1 Apply the knowledge of Mathematics to the solution of Engineering problems	1.1.1	Apply the knowledge of least square sense method to solve Engineering Problems.
	1.1.2	Apply the knowledge of correlation and regression to solve problems.
	1.1.3	Apply the concepts probability, to solve Engineering Problems.
	1.1.4	Apply the basic concepts probability distributions, to solve problems.
	1.1.5	Apply the knowledge of Markov Chain to solve engineering problems.

Competencies Addressed in the course and Corresponding Performance Indicators Programme Outcome: Any of 1 to 12 PO's:

Example: 1.2.3: Represents program outcome '1', competency '2', & performance indicator '3'.

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Course					Pro	gramme	Outco	mes				
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2										
CO2	3	2										
CO3	3	2										
CO4	3	2										
CO5	3	2										

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	40	20
CIE-II	40	20
Assignments/ Quizzes/Case Study/ Course Project/	10	10
Term Paper/Field Work		
SEE	100	50
Total	190	100

Question paper pattern for CIE-I and CIE-II:

Question paper consists Part-A and Part-B. Part A is compulsory, it consists of short answer questions of 1 or 2 marks, covering Unit-I and Unit-II (no multiple choice questions and No true or false questions).

1. In Part-B, four questions are to be set as per the following table.

CIE	Number of questions / Maximum marks	Sub divisions	Covering entire unit
Ι	Two questions of 15 marks (Solve any one)	Sub divisions shall not be mixed within the unit	Unit-I
	Two questions of 15 marks (Solve any one)	Sub divisions shall not be mixed within the unit	Unit-II
Π	Two questions of 15 marks (Solve any one)	Sub divisions shall not be mixed within the unit	Unit-III
	Two questions of 15 marks (Solve any one)	Sub divisions shall not be mixed within the unit	Unit-IV

Question paper pattern for SEE:

- 1. Question paper consists Part-A and Part-B. Question number 1 is compulsory, it consists of short answer questions of 1 or 2 marks, covering entire syllabus (no multiple choice questions and No true or false questions, 50% of questions must be L3 and L4 level).
- 2. In Part-B total of eight questions with two from each unit; with internal choice to be set uniformly covering the entire syllabus.
- 3. Each question carries 20 marks and should not have more than four subdivisions.
- 4. In Part-B, any FOUR full questions are to be answered choosing at least one from each unit.
- 5. Sketches, figures and tables if any should be clearly drawn, as the same is scanned for printing.
- 6. The question paper should contain all the data / figures / marks allocated, with clarity.

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOT DEPARTMENT OF MATHEMATICS FIRST CIE

Course	: B. E	Semester	:IV
Subject	: Statistics and Probability Distributions	Branch	:Common
Subject Code	:UMA491C	Max. Marks	: 40
Duration	$:1\frac{1}{2}$ hours		

Q. No.	Question	MAR KS	BL	CO	PI
	PART-A Compulsory. Answer all questions.				
1. a	Write normal equations to fit $y = mx + c$ by least square method	2	L2	1	1.1.1
b	Write normal equations to fit $y = ab^x$ by least square method	2	L1	1	1.1.1

c	Define probability	2	L3	2	1.1.2
d	A variable X has the probability distribution $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2	L2	2	1.1.3
e	Define probability density function	2	L1	1	1.1.3
	PART – B Answer any Two Full questions				

2 a)	Fit a s	traigh	t for th	e follow	ving data	l				5	L3	3	1.1.1
	x	1	2	3	4	5							
	У	2	5	3	8	7							
b)	Fit a p	arabo	la of s	econd de	egree y	=a+b	$x + cx^2$	for the c	lata	5	L3	3	1.1.1
	x	1	2	3	4	5							
	У	10	12	13	16	19							
c)	Fit a c	urve ·	y = ab	p^{x} for th	e data					5	L3	4	1.1.1
	x	1	2	3	4	5	6	7					
	У	87	97	113	129	202	195	193					
							•						

3 a)	Find tl the fol	ne coi Iowin	rrelati g	on coe	fficient	and the	equat	ion of	the lines of regression for	5	L3	3	1.1.1
	×	1	2	3	4	5							
	У	2	5	3	8	7							
b)	The so	ores	for n	ine stu	dents i	n physi	cs and	l math	n are as follows:	5	L3	6	1.1.1
	Comp Spearn	Phy Mat ute th man 1	vsics: thema ne stu cank c	35, 23 atics: 3 dent's correla	, 47, 17 0, 33, 4 ranks i tion.	7, 10, 4 45, 23, in the tw	3, 9, 6 8, 49, vo sub	, 28 12, 4 ojects	and compute the				
c)	Show tanθ	that $\vec{\sigma}_x$	if θ is $\sigma_x \sigma_y$ $\sigma_y^2 + \sigma_y^2$	the ar $\left(\frac{1-r^2}{r}\right)$	ngle be) .	tween	the lin	es of	regression, then	5	L3	6	1.1.1
4a)	Prove	that d	$P(A \cup$	(B) =	P(A) +	P(B) –	P(A)	$\cap B$)		5	L3	2	1.1.1
b)	A Shoc target hit (a'	oter ca in 2 whe	an hit out o n botł	a targe f 2 out n of the	et in 3 o of 3 sh em try (ut of 4 s ots. Finc b) by on	horts a I the p Iv one	and ar robab shoot	nother shooter can hit the ility that the target is being ter.	5	L3	2	1.1.1
c)	State a	nd pr	ove B	aye's tl	neorem	, ,	,			5	L3	2	1.1.1
5a)	The protection The table	obabi	lity di	stribut	ion of a	random	n variat	ole X i	s given by the following	5	L3	2	1.1.2
	x	-2		-1	0	1	2	3]				
	P(x)	0.	1	k	0.2	2k	0.3	k					
	Find K,	mea	n and	varian	ce								
b)	Imagin researce their sl their <u>C</u> At the price b	te you th of <u>j</u> nare p <u>EOs</u> same y mou babil	are a <u>public</u> price b during time, re than ity the	financ ly-trad y more g the pe only 3 n 5% in at the st	ial anal ed com than 5 th triod. 5% of t to the sat	yst at an <u>panies</u> , 6 % in the he comp me perio	invest 50% of last th panies t od repla	tment the corree ye that di aced the	bank. According to your ompanies that increased ears replaced id not increase their share heir CEOs. Knowing that an 5% is 4% find the	5	L3	2	1.1.2

			-		_
	probability that the shares of a company that fires its CEO will increase by more than 5%. (Example on Bays theorem)				
c)	Assume two independent events, A and B. Let $P(A) = 0.6$ and $P(B) = 0.4$. Then find $P(A \cup B)$.	5	L3	2	1.1.2

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOT DEPARTMENT OF MATHEMATICS Second CIE

Course	:B.E	S
		e
		n e
		s
		t
		e r
Subject	: Statistics and Probability Distributions	В
		r
		a
		n
		c
		h
Subject	:UMA491C	N
Code		a:

						x M a r	4	
Duration	$:1\frac{1}{2}$	nours				k S		
Q. No.	2				Question	MARKS	BLL	CO
		-	PART-A	Compuls	sory. Answer all questions.			
a	Define b	inomial di	istribution	n		2	L2	4
b	Define	Poisson d	istributio	ns		2	L1	4
c	Define	Normal d	istributio	ns		2	L3	4
d	What is	Markov	chain			2	L2	5
e	Define S	tochastic	Matrix ar	nd Regu	lar Stochastic Matrix	2	L3	5
					PART – B			
	Answer a	any Two F	ull questi	ons				
2a	Find mea	in and varia	ance for b	inomial	distribution	5	L2	4
b	2% of the that a boy fuses	fuses mar containin	ufactured g 200 fuse	l by a firr es contai	m are found to be defective. Find the probability ns i) no defective fuses ii) 3 or more defective	5	L2	4
c	In a norm mean and	nal distribu I S. D.	ition. 31%	of the it	ems are under 45 and 8% are over 64. Find the	5	L3	4
3a	The joint	probabilit	y distribut	ion of tw	vo random variables X and Y is given below	5	L2	4
	Y	-3	2	4]			
	х							
	1	0.1	0.2	0.2				
	3	0.3	0.1	0.1]			
					-			

		Find i) m	nargina	l distrik	oution of X and Y ii) covariance of X and Y			
b	.The	joint pro	obabilit	y distri	bution of two random variables X and Y is given below	5	L3	4
	y x	2	3	4				
	1	0.06	0.1 5	0.0 9				
	2	0.14	0.3 5	0.2 1				
	Fin	ıd i) maı	rginal d	listribu	tion of X and Y ii) covariance of X and Y			
c	If Σ f(x)	$(x, y) = \begin{cases} \\ \\ \end{cases}$	[•] are ra 4 <i>xy</i> ; 0 0	$(1) \text{indom}$ $0 \le x \le 0$	variables having joint density function 1, $0 \le y \le 1$ <i>herwise</i>	5	L3	4
	Verif	fy that	i)E(X +	· Y) = E(X) + E(Y) ii) E(XY) = E(X)E(Y)			
4a	Expl cha	ain i) Sto iin	ochasti	c Matri	x ii) Transient State iii) Absorbing State of a Markov	5	L2	5
b	The distri	t.p.m P bution (of a Ma (1/4, 3/	arkov c ⁄4). def	hain is given by $\begin{bmatrix} 1/2 & 1/2 \\ 3/4 & 1/4 \end{bmatrix}$ with the initial probability ine $P_{21}^{(2)}$, $P_{12}^{(2)}$, P_1^2 , $P_1^{(2)}$	5	L2	5
c	A stu study to stા	dents st / the ne udy the	tudy ha xt night next ni	abits ard t. On th ght. In	e as follows. If he studies one night, he is 70% sure not to ne other hand if he does not study one night he is 60% sure the long run how often does he study?	5	L3	5

(For students admitted to I year in 2021-22, CS, IS, AIML and EC)

5a	Find a unique fixed probability vector for the regular stochastic matrix. $\begin{bmatrix} 0 & 3/4 & 1/4 \\ 1/2 & 1/2 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	5	L3	5
b	Show that $P = \begin{bmatrix} 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ \frac{1}{2} \ \frac{1}{2} \ 0 \end{bmatrix}$ is a regular stochastic matrix	5	L3	5
c	Prove that the Markov chain whose transition probability matrix is $P = \left[0 \frac{2}{3} \frac{1}{3} \frac{1}{2} 0 \frac{1}{2} \frac{1}{2} \frac{1}{2} 0\right]$ is irreducible. Find the corresponding stationary probability vector	5	L3	5

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOT DEPARTMENT OF MATHEMATICS **Model Ouestion Paper**

Subject	:Statistics and Probability Theory	Semester	: IV
Subject Code	:UMA491C	Branch	: (EC/EEE/EI/CSc/ISC,AI)
Duration	:3 Hours	Max. Marks	: 100

Q. No.	Question	MARKS	BL	CO	PI
	PART-A Compulsory. Answer all questions.				
i	Fit a curve $P = mW + c$ for the following data	2	L2	1	1.1.1
	x 5 10 15 P(x) 16 19 23				
ii	Write normal equations to fit $y = ab^x$ by least square method	2	L1	1	1.1.1
iii	The probability that A passes a test is 2/3 and the probability that B passes a test is 3/5. Find the probability that only one will pass the test?	2	L3	2	1.1.2

iv	A variable X has the probability distribution. Find mean and variance	2	L2	2	1.1.3
	x 10 20 30 40 P(x) 1/8 3/8 3/8 1/8				
V	The joint density function of two continuous random variables X and Y is	2	L1	1	1.1.3
	$f(x, y) = \begin{cases} x^2 + xy/3; \ 0 < x < 1, \ 0 < y < 2\\ 0 & otherwise \end{cases}$ find a) P(X > 1/2)				
vi	Determine the binomial distribution for mean 4 variance 2. Also find $p(X < 3)$	2	L2	4	1.1.4
vii	If a random variable has a Passion distribution $P(1) = P(2)$, find mean	2	L1	4	1.1.4
viii	If z is normal distribution with mean 0 and variance 1 find $p(z < 1.64)$	2	L3	4	1.1.4
ix	Define Stochastic Matrix and Regular Stochastic Matrix	2	L2	5	1.1.5
X	Three students A, B, C are throwing ball to each other. A always throws the ball to B and B always throws the ball to C. C is just as likely to throw the ball to B as to A. Find t. p. m.of the Markov chain	2	L2	5	1.1.5

						Pa	art B						-	_	
		NOT	E: An	swer ai	ny four questi	rQues ion fr	stions om e	s choo ach ur	sing a nit.	t least	ONE full				
Q.No.						QUE	STIC	DN				MARKS	BLL	CO	PI
						U	NIT-I								
2. a.	Find x y	1 the e 5 16	quatio	n of the 15 23	best fi 20 26	tting 25 30	straig	ht line	e y=a+	bx for	the data	6	L3	1	1.1.1
b.	Fit a	1 2	2 6	$r = a + \frac{3}{7} + \frac{4}{8}$	bx + 5	$-cx^2$	in th 7 11	ne leas 8 10	t squa 9 9	re sens	se for the data	7	L3	1	1.1.1

с.	Fit a curve of the form $y = ab^x$ for the data				1.1.1
	x 0 2 4 5 7 10 y 100 120 256 390 710 1600	7	L3	1	
3. a.	Show that if ' θ 'is the angle between the lines of regression ,then $tan\theta = \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2} \left(\frac{1 - r^2}{r}\right)$	6	L2	2	1.1.2
b.	Obtain the lines of regression and hence find the coefficient of correlation for the following data x 1 3 4 2 5 8 9 10 13 15 y 8 6 10 8 12 16 16 10 32 32	7	L3	2	1.1.2
с.	Compute the rank correlation coefficient for the following data x 68 64 75 50 64 80 75 40 55 64 y 62 58 68 45 81 60 68 48 50 70	7	L3	2	1.1.2
	UNIT-II				
4. a.	If A and B are two events of S which are mutually exclusive then $P(A \cup B) = P(A) + P(B) - P(A \cap B)$	6	L2	3	1.1.3
b.	Given $P(A) = 3/4$, $P(B) = 1/5$ and $P(A \cap B) = 1/20$, find $P(A \cup B)$, $P(A \cap \overline{B})$, $P(\overline{A} \cap B)$, $P(\frac{A}{B})$, $P(\frac{B}{A})$, $P(\frac{\overline{A}}{\overline{B}})$.	7	L3	3	1.1.3
c.	An office has 4 secretaries handling respectively 20%, 60%, 15% and 5% of the files of all government reports. The probability that they misfile such reports are respectively 0.05, 0.1, 0.1 and 0.05. Find the probability that the misfiled report can be blamed on the first secretary.	7	L3	3	1.1.3
5. a.	Show that the following distribution represents a discrete probability distribution. Find mean and variance. x 10 20 30 40 $p(x)$ 1/8 3/8 3/8 1/8	6	L2	3	1.1.3

ł).	A rar	ndom va	riable ha	s the fol	on									
			X	-3	-2	-1	0	1	2	3	7				
			p(x)	k	2k	3k	4k	3k	2k	k		7	L2	3	1.1.3
		Find	i) k ii) p	p(x≤1) ii	i) p (x>1) iv) p	(-1 <x≤2< th=""><th>.)</th><th>!</th><th></th><th></th><th></th><th></th><th></th><th></th></x≤2<>	.)	!						
0	2.	Find Also P(1	the construction compute $< x < x$	etant k su e 2) <i>ii</i>)P(ich that j [x≤1) ii	f(x) = $ii) P(x$	$\{kx^2, 0 > 1\}$ <i>iv</i>	< x < 3) Mean v	30 othe)Varia	erwise ince		7	L2	3	1.1.3
						UNI	Г-III								
6.	a.	Find 4/3.	the Bind	omial pro	obability	distribu	ition wh	ich has m	iean 2 ai	nd varia	ance	6	L3	4	1.1.4
	b.	Find	the mea	n and sta	indard d	eviation	of the P	oisson di	stributio	on.		7	L3	4	1.1.4
	c.	If x i proba	is a nor ability th	mal vari at i) 26	ate with ≤x≤40	mean ii) x≥45	30 and s	standard	deviatio	n 5 fin	d the	7	L3	4	1.1.4
7.	a.	The j follo	oint pro ws	bability	distribut	as				1.1.4					
		Com		-4 1/8 1/4 X), E(Y),	2 1/4 1/8 E (XY)	7 1/8 1/8 and CC)V(X, Y).				6	L3	4	
b.		The giver $f(x, y)$ $0 \le y$ that X and	joint provide the provided pr	bability 2x + y Find k b	distribu where x Find th	ation of and y a e margi	two ra tre intego nal distr	andom va ers such t ibutions o	riables hat 0≤x of X and	X and :≤2, I Y. c) S	Y is Show	7	L3	4	1.1.4
	c.	Find the value of the constant c such that $f(x) = \{c(2x + y), 0 \le x \le 2, 0 \le y \le 3 0$ otherwise is a joint probability density function of X and Y. Hence evaluate $P(X \ge 1, Y \le 2)$.										7	L3	4	1.1.4
						UNI	Г-IV								
8. a	ı.	Defir matri	ne i) Pro x.	bability	vector ii) Stocha	stic mat	rix iii) Ro	egular st	ochasti	c	6	L2	5	1.1.5
	b.	Find	the unit $0 \frac{1}{6} \frac{1}{2}$	que fixed $\frac{1}{3} 0 \frac{2}{3}$	$\frac{1}{3}$	ility vec	etor for t	he regula	r stocha	stic ma	trix	7	L3	5	1.1.5

с.	Show that $P = \left[0 \ 1 \ 0 \ 0 \ 0 \ 1 \ \frac{1}{2} \ \frac{1}{2} \ 0 \right]$ is a regular stochastic matrix.	7	L3	5	1.1.5
9 .a.	Define absorbing state of Markov chain. Find the absorbing state of the following $\left[\frac{1}{2} \ 0 \ \frac{1}{2} \ 0 \ 1 \ 0 \ 0 \ \frac{1}{4} \ \frac{3}{4}\right]$	6	L2	5	1.1.5
b.	Prove that the Markov chain whose transition probability matrix is $P = \left[0 \frac{2}{3} \frac{1}{3} \frac{1}{2} 0 \frac{1}{2} \frac{1}{2} \frac{1}{2} 0\right]$ is irreducible. Find the corresponding stationary probability vector.	7	L3	5	1.1.5
с.	A students study habits are as follows. If he studies one night, he is 70% sure not to study the next night. On the other hand if he does not study one night, he is 60% not to study the next night. In the long run how often does he study?	7	L3	5	1.1.5

21UMA402C		03 - Credits (3 : 0 : 0)
Hours / Week : 03	Partial differential equations and Statistics	CIE Marks : 50
Total Hours : 40		SEE Marks : 50

UNIT – I	10 Hrs.					
Partial Differential Equations(PDE): Introduction to PDE: Formation of PDE's by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration. Solution of Lagrange's linear PDE, method of separation of variables, Derivation of one dimensional heat and wave equations and solutions by the method of separation of variables.						
UNIT – II	10 Hrs.					
Statistics and Probability Curve fitting by the method of least squares: $y = a + bx$, $y = ab^x$ and $y = a + bx + cx^2$ and regression. Probability : addition rule, conditional probability, multiplication rule, Baye's rule.	Correlation					
UNIT – III	10 Hrs.					
Binomial distributions Poisson distributions and Normal distributions.						
UNIT – IV	10 Hrs.					
Joint Probability distributions: Concept of joint probability, Joint distributions - discrete random variables. Markov chains: Introduction, Probability vectors, Stochastic Matrices, Fixed Points and Regula Matrices, Markov chains, higher transition probabilities, stationary distribution of reg chains and absorbing states.	ar stochastic gular Markov					
 References: 1. Higher Engineering Mathematics by Dr. B.S. Grewal, Khanna Publishers, New De 2. Advanced Engineering Mathematics By H. K. Das, S. Chand & company Ltd. Rate 	lhi.					

Learning Objectives:

- 1. To introduce the basic concepts required to understand, construct, solve and interpret Partial differential equations.
- 2. To acquire knowledge about predictions preferably on the basis of mathematical equations.
- 3. To understand the principal concepts about probability.

Course Outcomes:

After completion of the course the students shall be able to,

- 1. Understand a variety of partial differential equations and solve by exact methods.
- 2. Derive heat and wave equations and solve by the method of separation of variables.
- 3. Understand the concepts of curve fitting and probability.
- 4. Apply the concepts of probability distributions.
- 5. Apply the concept of Markov Chain for commercial and industry purpose.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

												- /				
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
No	Programme Outcomes Course Outcomes															
Th	e students will be able to:															
1	Understand a variety of partial differential equations and solve by exact methods.	3	2													
2	Derive heat and wave equations and solve by the method of separation of variables.	3	2													
3	Understand the concepts of curve fitting and probability.	3	2													
4	Apply the concepts of probability distributions	3	2													
5	Apply the concept of Markov Chain for commercial and industry purpose.	3	2													

Programme Outcome: Any of 1 to 12 PU's:					
Competency		Indicators			
1.1 Apply the knowledge of Mathematics to the solution of Engineering problems	1.1.1 A	apply the knowledge of partial differential equations to olve Engineering Problems.			
the solution of Engineering problems	1.1.2 A	apply the knowledge of heat and wave equations to solve roblems.			
	1.1.3 A	Apply the concepts of curve fitting and probability, to solve Engineering Problems.			
	1.1.4 A	apply the basic concepts of probability distributions, to olve problems.			
	1.1.5 A er	apply the knowledge of Markov Chain to solve ngineering problems.			

Competencies Addressed in the course and Corresponding Performance Indicators Programme Outcome: Any of 1 to 12 PO's:

Example: 1.2.3: Represents program outcome '1', competency '2', & performance indicator '3'.

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Course Outcomos	Programme Outcomes												
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	3	2											
CO2	3	2											
CO3	3	2											
CO4	3	2											

CO5	3	2	 	 	 	 	

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	40	20
CIE-II	40	20
Assignments/ Quizzes/Case Study/ Course	10	10
Project/Term Paper/Field Work		
SEE	100	50
Total	190	100

Question paper pattern for CIE-I and CIE-II:

Question paper consists Part-A and Part-B. Part A is compulsory, it consists of short answer questions of 1 or 2 marks, covering Unit-I and Unit-II (no multiple choice questions and No true or false questions).

1. In Part-B, four questions are to be set as per the following table.

CIE	Number of questions /	Sub divisions	Covering
	Maximum marks		entire unit
Ι	Two questions of 15	Sub divisions shall not be mixed	Unit-I
	marks (Solve any one)	within the unit	
	Two questions of 15	Sub divisions shall not be mixed	Unit-II
	marks (Solve any one)	within the unit	
II	Two questions of 15	Sub divisions shall not be mixed	Unit-III
	marks (Solve any one)	within the unit	
	Two questions of 15	Sub divisions shall not be mixed	Unit-IV
	marks (Solve any one)	within the unit	

Question paper pattern for SEE:

- 1. Question paper consists Part-A and Part-B. Question number 1 is compulsory, it consists of short answer questions of 1 or 2 marks, covering entire syllabus (no multiple choice questions and No true or false questions, 50% of questions must be L3 and L4 level).
- 2. In Part-B total of eight questions with two from each unit; with internal choice to be set uniformly covering the entire syllabus.
- 3. Each question carries 20 marks and should not have more than four subdivisions.
- 4. In Part-B, any FOUR full questions are to be answered choosing at least one from each unit.
- 5. Sketches, figures and tables if any should be clearly drawn, as the same is scanned for printing.
- 6. The question paper should contain all the data / figures / marks allocated, with clarity.

(For students admitted to I year in 2021-22, EEE)

21UMA403C		03 - Credit	s (3 : 0 :				
Hours / Wook : 02	Computation Techniques for	U)	ra : 50				
Total Hours : 40	Electrical Systems -11		xs . 50				
Total Hours : 40		SEE Mari	<u>ks:50</u>				
	UNIT – I		10 Hrs.				
Fourier analysis of Di	iscrete Time Periodic and Aperiodic sig	znals:	10 11150				
Introduction, Properties of Discrete - time Fourier series . Linearity. Time shift.							
Frequency shift, Scalin	ng, Differentiation and Integration, Conv	volution and M	Modulation,				
Parseval's theorem and	l problems on Fourier series and Fourier t	transforms.					
	UNIT – II		10 Hrs.				
Numerical Analysis -	·I						
Introduction to root f	finding problems, Newton-Raphson met	thod. Finite	differences,				
forward and backwar	rd difference operators (no derivation	s on relatior	ns between				
operators) Newton-Gr	regory forward and backward interpola	tion formulae	e. (Without				
proof), Lagrange's Method (without proof). Numerical differentiation using Newton's							
forward and backward formulae-problems. Numerical Integration: Trapezoidal rule,							
Simpson's one third rule.							
	UNIT – III		10 Hrs.				
squares: $y = a + bx$, y	boint method) Statistics: Curve fitting by $y = a + bx + cx^2$, $y = ab^x$.	the method of	f least				
	UNIT – IV		10 Hrs.				
Basic Probability T distributions. Binomi Concept of joint proba	Theory: Probability concepts, Randor al distributions, Poisson distributions ar bility, Joint probability distributions.	n variables nd Normal di	probability istributions.				
References:							
1. Numerical Metho	ds for Engineers by Steven C Chapra & R	Raymond P Ca	anale.				
2. Higher Engineeri Delhi.	ng Mathematics by Dr. B.S. Grewal, k	Khanna Publi	shers, New				
3. Advanced Engine	eering Mathematics By H. K. Das, S. Cl	hand & comp	any Ltd.				
Ram Nagar, New	Delhi						
4. "Signals and Sy Publishers, 2 nd Ed:	stems"by Ganesh Rao, Satish Tunga, ition, 2020.	Sanguine T	echnical				
5. Signals and System	ms, Uday Kumar S.PRISM book publishe	er, 6 th Edition,	2013				
6. H P HSU, "Signal	s and Systems," Schaums Outline, TMH,	2^{na} Edition, 2	2011.				
7. Probability and st wiley India pvt.ltd	tochastic processes by Roy D. Yates and 12 nd edition 2012.	d David J. G	oodman,				
8. Theory and proble	ems of probability by Seymour Lipschutz	(Schaum's Se	eries).				

(For students admitted to I year in 2021-22, EEE)

Learning Objectives:

- 1. To understand concepts of Fourier series, Fourier transforms.
- 2. To understand the numerical methods for solving algebraic & transcendental equations
- 3. To understand the numerical methods for solving ordinary differential equations.
- 4. To acquire the knowledge of interpolation techniques
- 5. To understand the basic concepts of numerical differentiation, numerical integration and numerical solutions of ordinary differential equations.
- 6. To understand the principal concepts about probability theory.
- 7. To apply the knowledge of Statistics and probability in Electrical and Electronics Engineering fields

Course Outcomes:

After completion of the course the students shall be able to,

- 1. Apply the concepts of Fourier series and Fourier transforms to analyse Discrete Time Periodic and aperiodic signals.
- 2. Solve engineering problems using numerical techniques.
- 3. Obtain the numerical solution of ordinary differential equations.
- 4. Apply the concepts of Statistics and probability to solve problems in Engineering.

(For students admitted to I year in 2021-22, EEE)

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
No	Programme Outcomes Course Outcomes															
111	e students will be able to.					-										
1	Apply the concepts of Fourier series and Fourier transforms to analyse Discrete Time Periodic and aperiodic signals.	3	2										2			
2	Solve engineering problems using numerical techniques.	3	2													
3	Obtain the numerical solution of ordinary differential equations.	3	2													
4	Apply the concepts of Statistics and probability to solve problems in Engineering.	3	2													

Competencies Addressed in the course and Corresponding Performance Indicators

Programme Outcome: Any of 1 to 12 PO's:

Competency	Indicators				
1.1 Apply the knowledge of Mathematics to the solution of Engineering problems	1.1.1 Apply the concepts of Fourier series and Fourier transforms to analyse Discrete Time Periodic and a periodic signals.				
	1.1.2 Solve engineering problems using numerical techniques.				
	1.1.3 Obtain the numerical solution of ordinary differential equations.				

(For students admitted to I year in 2021-22, EEE)

1.1.4	Apply the concepts of Statistics and
	probability to solve problems in
	Lingineering.

Example: 1.2.3: Represents program outcome '1' , competency '2' , & performance indicator '3' .

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

(For students admitted to I year in 2021-22, EEE)

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Course	Programme Outcomes											
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2										2
CO2	3	2										
CO3	3	2										
CO4	3	2										

Evaluation Scheme:

Assessment		Marks	Weightage
CIE-I		40	20
CIE-II		40	20
Assignments/ Quizzes/Case Study/ Course Project/Term Paper/Field Work		10	10
SEE		100	50
١	「otal	190	100

Question paper pattern for CIE-I and CIE-II:

(For students admitted to I year in 2021-22, EEE)

Question paper consists Part-A and Part-B. Part A is compulsory, it consists of short answer questions of 1 or 2 marks, covering Unit-I and Unit-II (no multiple choice questions and No true or false questions).

1. In Part-B, four questions are to be set as per the following table.

CIE	Number of questions / Maximum marks	Sub divisions	Covering entire unit
Ι	Two questions of 15 marks (Solve any one)	Sub divisions shall not be mixed within the unit	Unit-I
	Two questions of 15 marks (Solve any one)	Sub divisions shall not be mixed within the unit	Unit-II
II	Two questions of 15 marks (Solve any one)	Sub divisions shall not be mixed within the unit	Unit-III
	Two questions of 15 marks (Solve any one)	Sub divisions shall not be mixed within the unit	Unit-IV

Question paper pattern for SEE:

- Question paper consists Part-A and Part-B. Question number 1 is compulsory, it consists of short answer questions of 1 or 2 marks, covering entire syllabus (no multiple choice questions and No true or false questions, 50% of questions must be L3 and L4 level).
- In Part-B total of eight questions with two from each unit; with internal choice to be set uniformly covering the entire syllabus.
- 3. Each question carries 20 marks and should not have more than four subdivisions.
- 4. In Part-B, any FOUR full questions are to be answered choosing at least one from each unit.
- 5. Sketches, figures and tables if any should be clearly drawn, as the same is scanned for printing.
- 6. The question paper should contain all the data / figures / marks allocated, with clarity.