BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOTE- 587 102

BVVS

21UME 112 C		03 - Credits (2 : 2 : 0)
Hrs./Week : 03	ELEMENTS OF MECHANICAL ENGINEERING	CIE Marks : 50
Total Hours : 30	ENGINEERING	SEE Marks : 100
	UNIT – I	10 Hrs

Steam formation: Introduction, Formation of Steam, TS and TH diagrams, Types of steam, Steam properties: specific volume, enthalpy, internal energy and Entropy (numerical problems), Working of steam boilers: Babcock and Wilcox Boiler, Lancashire Boiler, List of mountings, accessories, their locations and applications.

Water Turbines: Introduction, Classification, Working principle and operation of Pelton wheel, Francis turbine and Kaplan turbine.

Steam Turbines: Introduction, Classification, Working principle and operation of Impulse and Reaction turbine, Necessity of compounding of Impulse turbine.

Gas Turbines: Introduction, Classification, Working of open cycle Gas Turbine and Closed cycle Gas turbine with schematic diagram and comparison between open and close cycle gas turbine.

UNIT – II	10 Hrs
Internal Combustion Engines	
Introduction, Classification of I.C.engine, Parts of I.C. engine, I.C. engine nomenclature,	Working of

four stroke petrol and diesel engines, Comparison between SI and CI engines, Calculations: I.P., B.P., mechanical efficiency, thermal efficiency, volumetric efficiency, specific fuel consumption, brake specific energy consumption, Numerical Problems on four stroke engine.

Automobile Engineering:

Introduction, History and development of an automobile, Classification of automobiles, Layout of four wheeler (Layout diagram), Definition and working (function and block diagram) of Clutch, Gearbox and Differential.

UNIT - III

10 Hrs

Refrigeration and Air-conditioning:

Introduction, Definition of refrigeration, Principle of refrigeration, Unit of refrigeration (TR), Coefficient of performance, Relative co-efficient of performance, Working of vapour compression refrigeration system(VCRS), Working of vapour absorption refrigeration system (VARS), Comparison between VCRS and VARS, Properties of good refrigerant, Working of room air-conditioner.

Metal Joining Processes: Definition: Soldering, brazing and welding, Working principle: soldering and brazing, Welding process: Definition, Principles, Classification, Application, Advantages & limitations of welding, Arc welding process, Gas welding: Gas welding process, types of gas flames, Comparison between soldering, brazing and welding.

Lubrication: Classification and properties of lubricants.

Bearing: Classification of bearings, working of Bush bearing, pedestal bearing, pivotal bearing, collar bearing and antifriction bearing.

UNIT IV

10 Hrs

Power Transmission:

Belt drives: Open belt drive, Crossed belt drive, Derivation: Length of belt for open system and crossed systems, Velocity ratio of belt drives, Slip, Creep, Belt tension, Power transmitted by a belt drive, Comparison between flat and V belt drives, Numerical Problems.

Gear drives: Type of gear drives, Nomenclatures of spur gear with sketch, Advantages of gear drives, Disadvantages of gear drives, velocity ratio of gear drives, Gear trains: Simple and compound gear trains, Numerical Problems.

Industrial Engineering: Concept of Industrial Engineering: Definition, History and development, Roles of Industrial Engineer, Application of Industrial Engineering, Scope of Industrial Engineering.

Reference Books:

- 1. K. R. Gapalakrishna, "Elements of Mechanical Engineering" 37th edition, Subhas, 2017.
- 2. S. Trymbaka Murthy, "Elements of Mechanical Engineering" 3rd edition, IK International, 2010
- 3. R. K. Rajput, "Automobile Engineering", Laxmi Publications, 2013.
- 4. T. R. Banga and S. C. Sharma, Industrial Engineering and Management, 11th edition, Khanna, 2013

Course Outcomes:

After completion of the course, student will be able to:

- 1. Calculate enthalpies of wet steam, dry steam and superheated steam, specific volumes of wet steam, dry steam and superheated steam and saturated temperature, superheated temperature from the steam tables.
- 2. To compute and analyze the performance of IC engines used in automobiles and analyze the concept of electric and hybrid vehicles for future mobility, refrigeration and air conditioning.
- 3. Select metal joining processes of welding, brazing and soldering based on the application.
- 4. Determine the power transmission, gear ratios of simple and compound gear trains.

Course Outcomes		Program Outcomes (POs)									Program Specific Outcomes (PSOs)					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	1		1					1	1		1	1			
CO2	2	2		1					1	1		1				
CO3	1	1			1				1	1		1	1			
CO4	2	1		1					1	1		1	1			

Table: Matrix to describe the mapping of POs with Cos

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOTE- 587 102

COMMON TO ALL BRANCHES

BVV

21UME 113 C/L		03 - Credits (2 : 0 : 2)
Hrs./Week : 03		CIE Marks : 50
Total Hours : 30	DRAWING	SEE Marks : 100

Course Outcomes:

The students will be able to:

- 1. Analyze the variation in projection length and angles of a straight line for different positions.
- 2. Compare the changes in shapes of projections for different positions of two dimensional objects.
- 3. Present the orthographic views of different three dimensional systems and convert orthographic views to isometric views.
- 4. Read the engineering drawings of machines, Civil works, town plans and engineering systems.

UNIT – I	7 Hrs
Projection of points: Projection of points located in all quadrants. Projections of straight lines: Projections of lines located in first quadrant only, line parallel to both the perpendicular to one plane and parallel to other, inclined to one plane and parallel inclined to both the planes. Determinations of true length and true inclinations wite planes.	l to other,
UNIT – II	7 Hrs
Projections of planes: Projections of planes- perpendicular to the both the planes, parallel to one perpendicular to other, inclined to one plane and perpendicular to other and i both the planes.	
UNIT - III	8 Hrs
Projections of solids: Projection of solids (Prisms, Pyramids, Cones, and Cylinders) with axis/base i HPand profile views.	nclined to
UNIT IV	8 Hrs
Isometric Projection: Isometric Projection of Prisms, Pyramids, Cones and Cylinders. Isometric Pro combinations of two solids (Co-Axial only).	jection of
Text Books: 1. K.R.Gopalkrishna, "Engineering Drawing', vol. I and II, 23 rd edition, Subhas, 201 2. N.D.Bhat "Engineering Drawing"	.4.

- 2. N.D.Bhat "Engineering Drawing"
- 3. R.K.Hegde and Niranjan Murthy, "Engineering Graphics" 1st edition, Sapna, 2003.

Reference Books:

- 1. K.R.Gopalkrishna, "Engineering Drawing', vol. I and II, 23rd edition, Subhas, 2014.
- 2. N.D.Bhat "Engineering Drawing"
- 3. R.K.Hegde and Niranjan Murthy, "Engineering Graphics"1st edition, Sapna, 2003.
- 4. Dr. B. K. Venkanna"Engineering Graphics",
 - P.I.Varghese, "Engineering Graphics", McGraw Hill, 2013

Question paper pattern for SEE: Laboratory Assessment:

- (a) CIE for 50 Marks: 30 Marks for term work (sketching and printouts from SOLID EDGE) and 20 Marks for Lab CIE test.
- (b) The practical-SEE of three hours is conducted as per the model question paperfor 100 marks and scaled down to 50 Marks.
- (c) 50%weightage for sketch and 50% weightage for printoutsin both CIE and SEE.

Course				I	Prograr	nme O	utcome	es (POs))			
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
1	3	3	3	1	3	1	2	-	2	2	1	2
2	3	3	3	1	3	2	1	-	2	2	1	1
3	3	3	3	1	3	1	1	-	3	3	-	2
4	3	3	3	1	3	3	2	-	3	3	-	3

Table: Matrix to describe the mapping of POs with Cos

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOTE- 587 102 Academic Year : 2022-23

IIIrd Semester B.E. (Mechanical Engineering)

Scheme of teaching and examination for B.E. I to VIII semesters (160 credits NEP) commencing from 2022 – 23 academic year (2021-22 admitted regular batch and Diploma Lateral Entry 2022-23 Batch).

SI.	Catagory	Subject Code				Hours/Wee	k	Examination Marks			
No.	Category	Subject Code	Subject	Credits	Lecture	Tutorial	Practical	CIE	SEE	Total	
1.	BSC	21UMA3XXC	Numerical Techniques and Fourier Series	3.0	3	-	-	50	50	100	
2.	PCC	21UME301C	Strength of Materials	3.0	2	2	-	50	50	100	
3.	PCC	21UME302C	Engineering Thermodynamics	3.0	2	2	-	50	50	100	
4.	PCC	21UME303C	Manufacturing Technology-I	3.0	4	-	-	50	50	100	
5.	PCC	21UME304L	Manufacturing Technology Lab	1.0	-	-	2	50	50	100	
6	PCC	21UME305L	Mechanical Drawing and GD & T Lab	2.0	-	-	4	50	50	100	
7.	INT	21UME306I	Summer Internship – I	2.0	-	-	-	50	50	100	
8.	AEC	21UME307L	Python Programming Lab	1.0	-	-	2	50	50	100	
9.	UHV	21UXX XXX X	UHV	1.0	1	-	-	50	50	100	
10.	HSSM	21UXX XXX X	SK/BK or Cl	1.0	1	-	-	50	50	100	
			Total	20	13	04	12	500	500	1000	

INT: Summer Internship – I. (Annexure-I A)

For awarding B.E. (Mechanical Engineering) degree, each student is required to complete minimum of 03 weeks of Internship during 2nd semester summer to earn 02 credits which will be awarded during 3rd Semester.

UHV:

Question paper will be of objective type. Students have to pass the subject compulsorily, however marks will not be considered for awarding Grade/Class/Rank.

21UME 301 C		03 - Credits (2 : 2 : 0)
Hrs./Week : 03	STRENGTH OF MATERIALS	CIE Marks : 50
Total Hours : 40		SEE Marks : 100

Unit - I	10 Hrs							
Simple stress and strain: Introduction, stress, strain, mechanical properties of Linear elasticity, Hooke's Law and Poisson's ratio, Stress-Strain relation – behavior for Mild steel and non ferrous metals. Extension / Shortening of a bar, bars sections varying in steps, bars with continuously varying cross sections (cirrectangular), Elongation due to self weight, Principle of super position.	r in Tension with cross							
Stress in composite section: Volumetric strain, expression for volumetric strain, ela constants, simple shear stress, shear strain, temperature stresses (including compo	ound bars).							
UNIT - II	10 Hrs							
Compound stresses: Introduction, plane stress, stresses on inclined sections stresses and maximum shear stresses, Mohr's circle (introduction).	s, principal							
Bending moment and Shear force in beams: Types of beams, loads and reactions, forces and bending moments, sign conventions, relationship between shear force a bending moments, shear force and bending moment diagrams for different beams to concentrated loads, uniform distributed load (udl) and couple for different types	and subjected							
Unit - III	10 Hrs							
 Thick and thin cylinders: Stresses in thin cylinders, changes in dimensions of cylind (diameter, length and volume), Thick cylinders subjected to internal and external p (Lame's equation), (compound cylinders not included). Bending and shear stresses in beams: Introduction, theory of simple bending, assusingle bending, relationship between bending stresses and radius of curvature, r between bending moment and radius of curvature, shear stresses, symmetric 	ressures umptions in relationship							
sections. Unit - IV	10 Hrs							
Deflection of beams: Introduction, differential equation for deflection, equ	uations for							
deflections-Cantilever subjected to concentrated load at free end, UDL, simply beam subjected to point load at mid-span.UDL.	supported							
Torsion of circular shafts and Elastic stability of columns: Introduction, pure torsion, assumptions, derivation of torsional equations, polar modulus, torsional rigidity / stiffness of shafts, power transmitted by solid and hollow circular shafts.								
Introduction to columns, Euler's theory for axially loaded elastic long columns, der Euler's load for various end conditions, limitations of Euler's theory, Rankine's form								

Course Outcomes

At the end of the course the student should be able to:

CO1: Analyze the different types of physical loads, properties of the materials, such as stresses, strains, elasticity, deformation for varying cross section, compound bars, self-weight and thermal stresses.

CO2: Analyze the compound stresses analytically, and graphically. And cylinders exposed to internal and external pressures from the view point of stresses developed and change in their dimensions.

CO3: Demonstrate the understanding of the shear force and bending moment and estimate bending of beams of subjected to different loads with different end conditions of beams. Analyse the bending and shear stresses for different cross sections.

CO4: Demonstrate the understanding of the concept torque, stresses developed and the rigidity of the mechanical elements transmitting power or subjected to twisting moment. Columns with different end conditions subjected to axial loading.

Reference Books:

- 1. "Strength of Materials", S.S.Bhavikatti, Vikas publications House Pvt. Ltd., 2nd Ed., 2006.
- 2. "Mechanics of materials" R. C. Hibbeler, Printice Hall, Pearson Edu., 2005
- 3. "strength of material" by Dr.R.K.Bansal,Laxmi publications,fourth edition 2010.
- 4. "Mechanics of Materials" by K.V. Rao, G.C. Raju, First Edition, 2007
- 5. "Mechanics of materials" James M. Gere, Thomson, Fifth edition 2004
- 6 "Mechanics of materials" Ferdinand Beer & amp; Russell Johnstan, TATA MaGrawHill-2003.

7. "Mechanics of Materials" by H. J.Sawant, Technical publications, 2010

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course		Programme Outcomes (POs)									Program Specific Outcomes (PSOs)							
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4		
CO1	3	3	2	3	1	-	-	-	2	1	-	2	-	-	-	-		
CO2	3	3	2	2	1	-	-	-	1	2	-	2	-	-	-	-		
CO3	3	3	1	3	1	-	-	-	2	1	-	2	-	-	-	-		
CO4	3	3	1	2	1	-	-	-	2	1	-	2	-	-	-	-		

21UME 302 C		03 - Credits		
L:T:P -26 : 26: 00	ENGINEERING THERMODYNAMICS	CIE Marks : 50		
Total Hours : 52		SEE Marks : 50		

UNIT – I	13 Hrs
Work & Heat: Definition of work-according to mechanics, according to thermodynamics,	examples,
sign convention; Displacement work- PdV expressions for displacement work in various	processes
through p-v diagrams, Other types of work- Shaft work, paddle wheel work, work in stra	ining a bar,
free expansion work, electrical work; Heat- definition, units and sign convention; Comp	arison and
differences between work and heat. Numerical Problems	
differences between work and heat. Numerical Problems	

First Law of Thermodynamics: Joule's experiments; Statement of the First law of thermodynamicscyclic, non-cyclic processes; Energy- modes of energy, internal energy, internal energy as a property; Specific heat- at constant volume, at constant pressure; Enthalpy; Extension of the First law to control volume- steady state-steady flow energy equation, important applications with line diagram. Numerical Problems.

13 Hrs

UNIT – II

Second Law of Thermodynamics: Energy- High grade, low grade; Heat reservoirs-heat source and heat sink; Heat engines-definition, schematic representation, thermal efficiency; Reversed heat engines-refrigerator, heat pump, COP; Second Law of Thermodynamics- Kelvin -Planck statement, PMM II, Clasius's statement; Equivalence of the two statements; Reversible and irreversible processes- definition, factors that make a process reversible and irreversible; Carnot cycle- processes involved in Carnot cycle, PV, TS and line diagram; Carnot principles; Thermodynamic temperature scale. Numerical Problems.

Gas Power Cycles: Air standard cycles- Carnot, Otto, Diesel, Dual and Stirling cycles, PV and TS diagrams, description / process, efficiency derivation, mean effective pressure derivation, comparison of Otto, Diesel and dual cycles; **Numerical Problems**.

UNIT - III	13 Hrs
Combustion Thermodynamics: Combustion- complete, incomplete; Air for combustion- t excess, problems;; problems; Enthalpy of formation – definition, determination of e formation of compounds using tables, enthalpy and internal energy of combustion, problems ; Combustion efficiency; Adiabatic flame temperature.	enthalpy of
I.C. Engines: Geometrical properties of reciprocating engines; Performance parameters work, BP, IP, MEP, SFC, SEC, A/F ratio, equivalence ratio, efficiencies (mechanical, there conversion, volumetric), engine specific weight, engine specific volume, relationship performance parameters; engine design and performance data analysis; Dynamometer types (Rope break and eddy current), description; Methods of FP calculation; Measurem consumption and air consumption; Heat balance sheet; Numerical problems .	rmal / fuel p between -definition,
UNIT IV	xx Hrs
Reciprocating Compressors: Air Compressor terminology; Operation of a single stage real air compressor; Work input of single stage- without clearance, representation on PV d different processes, work done derivation for different process; Work input of single s clearance, PV diagram, effect of clearance volume and volumetric efficiency; Adiabatic, and mechanical efficiencies; Multi-stage compressor- saving in work, optimum in pressure, inter-cooling, minimum work for compression; Numerical problems on single sta	liagram for stage- with isothermal termediate

Refrigeration: Vapour compression refrigeration system- dry compression, wet compression, superheated & sub cooling compression, their PH, TS diagram, description/process, analysis, refrigerating effect, capacity, power required, COP; Air cycle refrigeration- reversed Carnot cycle, analysis for non flow system and flow system; Reversed Brayton cycle- analysis as flow system; **Numerical Problems**

Reference Books:

- 1. B.K.Venkanna,2010, Basic Thermodynamics(2 nd edition),PHI learning
- 2. B.K.Venkanna, 2012, Applied Thermodynamics (2 nd), PHI learning
- 3. Rajaput, 2007, Engineering Thermodynamics (2 nd), Laxmi Publications

Question paper pattern for SEE:

- 1. Part A: One two marks questions covering entire syllabus for 20 marks (compulsory).
- 2. Part B: Four units, each unit carrying 2 questions of 20 marks each.
- 3. Students need to answer 4 full questions selecting one from each unit.

Course Outcomes:

After completion of the course student will be able to

CO1: Define the concepts of heat, work, and energy, develop/analyze energy application device Demonstrate a basic understanding of the First Law of Thermodynamics for energy conservation analysis of different thermodynamics processes of systems and control volumes and to estimate required balances of heat, work and energy flow (heaters, coolers, pumps, turbines, pistons, etc...

CO2: Demonstrate a basic knowledge of the Second Law of Thermodynamics and its corollaries to determine whether a cycle is possible, and to determine the maximum performance/efficiency of cycles and its application to systems and control volumes.

CO3: To write/compute stoichiometric balance chemical reactions, calculate equivalence ratios, estimate energy transfer associated with combustion problems. Analyze the performance (BP, IP, BSFC, ISFC, BSEC, BTE, ITE, Volumetric efficiency, Mechanical Efficiency,) /heat balance sheet of internal

CO4: Do thermodynamic analysis (single and multi-stage, single acting and double acting) of reciprocating compressor and optimize the power in put calculation compare and discuss single and double acting, single and multi-stage performance data. Understand the components and basic assumptions for the vapor-compression refrigeration system, demonstrate the ability to design thermodynamic cycle and to perform analysis of reversed Carnot cycle based, refrigeration and heat pump cycles using various working fluids.

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes				Pro	gran	nme	Out	com	nes (POs)				-	Specifies (PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	3	2	-	2	2	-	-	-	-	-	-	1	1	1	-
CO2	3	2	3	-	2	1	-	-	-	-	-	-	0	1	1	-
CO3	3	2	3	-	3	-	-	-	1	-	-	-	0	1	1	-
CO4	2	1	1	-	2	1	-	-	1	-	-	1	0	1	1	-

21UME 303 C		03 - Credits		
L:T:P - 3 : 0: 0	MANUFACTURING TECHNOLOGY-I	CIE Marks : 50		
Total Hours/Week: 3		SEE Marks : 100		

Unit - I	10 Hrs
Introduction to manufacturing process Concept of Manufacturing process, its Selecting manufacturing processes.	importance.
Casting: Introduction to Casting process steps involved. Varieties of components produce process. Advantages & Limitations of casting process. Moulding sands - Types and Propert - types of patterns, selection of patterns - pattern allowances - Classifications of castings - mould materials and moulding methods. Special casting techniques	ties, patterns
Gating System: Gating and Risering: Elements of gating system. Types of gates .Gate design. Numericals on gating and risering	-
UNIT - II	10 Hrs
Welding: Welding process: Definition, Principles, Classification, Application, Advantage limitations of welding. Classification of welding process: TIG, MIG, SMAW, Flux cored arc w Thermite welding, Numericals	
Unit - III	10 Hrs
Drawing: Drawing of rods, wires and tubes. Sheet metal forming methods, shearin bending, stretch forming, deep forming. Spinning: spinning processes- Nur drawing load and sheet metal work. High Velocity forming: Introduction to Explosive, Electro hydraulic and Elect	mericals on
forming. Unit - IV	10 Hrs
Theory of Metal Cutting: Single point cutting tool nomenclature, geometry, Merce diagram and analysis, Ernst Merchant's solution (Relation of orthogonal cutting for angle relationship, Stresses and strain in the chip, Power and Energy relation cutting, problems of Merchant's analysis, tool wear and tool failure, tool life cutting parameters on tool life, tool failure criteria, Causes of wear, Taylor's tool life problems on tool life evaluation.	rces), shear ns in metal , effects of
Reference Books:	
1. "Production Technology" by R K Jain, Khanna Publishers,	
2. "Production Technology" by HMT, Tata McGraw-Hill-2006	
3. "A Text book of Production Technology", Vol II, Dhanpat rai & sons, 1992	
4. "Elements workshop Technology" vol 1 & 2 by Hajra & Choudhary	
4. "Elements workshop Technology" vol 1 &2 by Hajra & Choudhary Course Outcomes: At the end of the course the student should be able to:	

CO1-The student will be having the capability of select and apply suitable manufacturing process to

manufacture the product optimally.

CO2-The student will be able to recommend the appropriate apply and design of gating systems , forming processes, welding process.

CO3-Based on the type of different products the students will select and apply the required forming process.

CO4-Select and apply required tools, fluids, materials and analyze the cutting forces, tool life also summarize the effect of cutting parameters.

Question paper pattern for SEE:

- 1. Part A: 1 to 2 marks questions covering entire syllabus for 20 marks (compulsory).
- 2. Part B: Four units, each unit carrying 2 questions of 20 marks each.
- 3. Students need to answer 4 full questions selecting one from each unit.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

Course			Pr	ogran	nme (Dutco	mes (I	Pos)/F	Progra	mme	Specifi	c Outc	omes (PSO)		
Outco	PO	РО	PO	РО	PO	РО	PO	РО	PO	РО	РО	РО	PS	PS	PS	PS
mes	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03	O 4
(COs)																
CO1	2	2	-	-	-	-	2	1	2	2	1	2	2	2	1	-
CO2	2	2	2	-	-	-	2	1	2	2	1	2	2	2	2	-
CO3	2	2	1	-	-	-	2	1	2	2	1	2	1	1	2	-
CO4	2	2	2	-	-	-	2	1	2	2	1	2	2	2	1	-
							High ·	-3, Me	edium	– 2, Lo	ow - 1					

21UME 304 L	III Semester	01 - Credits
L:T:P - 0-0-2	MANUFACTURING TECHNOLOGY	CIE Marks : 50
Total Hours/Week: 2	LAB-I	SEE Marks : 50

	Part – A	
cutting,	ation of three models on lathe involving Plain turning, Taper turning, Step turn Facing, Knurling, Drilling, Boring, Internal Thread cutting and Eccentr ination of gear train for thread cutting. Preparation of the process chart for the cor	ic turning.
	PART - B	
Milling	of V Groove/ dovetail / Rectangular groove using Shaping and Cutting of Gear Machine. Planning machine. Estimation of stroke length, Number of stroke, Es eparation of process chart for the component.	-
	PART - C	
1.	 Preparation of green sand moulds using two molding boxes kept ready for pouring 1.patterns (Single piece pattern and Split pattern) 2.Without patterns. 3. Incorporating core in the mould. (Core boxes). 4. Preparation of one casting (Aluminium or cast iron-Demonstration only) 	. Using
Quest	ion paper pattern for SEE:	
2.	Each laboratory subject is evaluated for 100 marks (50 CIE and 50 SEE). The CIE in laboratory in classes is carried out for 50 marks (30 marks for the perforterm work) For remaining 20 marks one practical test to be conducted. The SEE practical is conducted for 50 marks two question to be set from eac (Process chart five marks + 15 marks for job) and Part B (Process chart and prog 15 marks + Virtual machining 5 marks). for 20 marks each and 10 marks Viva voce	h Part A ramming
Cours	e Outcomes	
After c	ompletion of the lab student will be able to	
CO	 P1: Know the various machining operations and its application P2: Know the various modern machining processes. P3: Know the machining calculations. 	

CO4: Use the techniques, skills and modern engineering tools necessary for engineering practice.

Course			Progr	am	me	Out	con	nes ((POs	5)				-	Specif es (PSO	
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	1	1	2	1	2	1	1	2	-	-	-	2	2	1	2
CO2	2	3	1	2	-	1	1	-	-	-	-	-	2	2	1	1
CO3	3	1	2	1	-	1	-	-	-	-	-	-	3	1	3	1
CO4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_

21UME305L		02 - Credits
L:T:P : 0 : 0: 4	MECHANICAL DRAWING and GD & T LAB	CIE Marks : 50
Total Hours/Week: 04		SEE Marks : 50

	Part – A	xx Hr
Drafting		
	ng and Tolerance	
 Surface finis 		
	s, abbreviations and symbols	
	of GD & T in Engineering practice	
• Sections of s	ic conversion (Miscellaneous Problems)	
• •	t drawing reading 3 examples	
<u> </u>	PART - B	xx H
Assembly Drawing		
 Valves (Any 	one), Plummer block	
Free hand sketching	; of the following (Any Two)	
Carburetor, Fuel pu	np, differential, power transmission, couplings, screv	w jack, knuckle joint
The SEE pra	ng 20 marks one practical test to be conducted octical is conducted for 50 marks two question to be arks and 10 marks Viva voce.	e set from each Part A 20
References:	rawing, By K.R.GOPALAKRISHNA (Revised Syllabus 20	103-20041
Course Outcome		
After completion	of the course student will be able to	
CO1: Proficient in us	sing engineering drawing instruments, materials and t	techniques
CO2: Draw freehand	I sketches, orthographic projections, and use of surfa	ice texture symbols and
dimensioning	styles in the drawing	
•	gs to industrial standard and draw the assembly from	the individual part drawi
	freehand sketching, conventions used in engineeri	•
	and tolerance etc	0 0,0
-	ted as per the format with decreasing level of covera	age of syllabus
	written with proper action word and should be ass	• •
Course Outcomes	Programme Outcomes (POs)	Program Specific Outcomes (PSOs

Course Outcomes			Ρ	rog	ram	me	Out	con	nes	(POs))			Program Specific Outcomes (PSOs) 1 2 3 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	
CO1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO2	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-	-	
CO3	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-	-	
CO4	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-	-	

21UME XXX X		02 - Credits (X : X : X)
L:T:P : 0 : 0: 4	III Semester SUMMER INTERNSHIP - I	CIE Marks : 00
Total Hours/Week: 04	SOWIWER INTERNSHIP - I	SEE Marks : 100

Course Outcomes

- 1. Explore career alternatives prior to graduation
- 2. Integrate theory and practice
- 3. Develop communication, interpersonal and other critical skills in the job interview process
- 4. Learn to appreciate work and its function in the economy.
- 5. Build a record of work experience.

Content of Activities:

- 1. Learning at Departmental Lab/Tinkering Lab/ Institutional workshop.
- 2. Learning MS Word, Excel, Microsoft equations, MS drawing tools, MS Power point, etc.
- 3. Essay competitions: Both in Kannada and English on technical topics already studied.
- 4. Survey and study of published literature on the assigned topic: Technical paper survey, preparation of synopsis. Exposure to technical paper publications.
- 5. Athletics and Sports.
- 6. Solar energy connected activities that help common man.
- 7. Cultural activities: Dram, Dance.
- 8. Industrial safety, fire safety, electrical safety, chemical process safety, food safety, etc.
- 9. Industrial visits/Small Scale Industries/Factories/Cottage Industries/substation visit/short project tour, etc., and submission of report.

Evaluation:

Student's Diary

The main purpose of writing daily diary is to cultivate the habit of documenting and to encourage the students to search for details.

The students shall record in the daily training diary the day to day account of the observations, impressions, information gathered and suggestions given, if any, and activities carried out.

It should contain the sketches and drawings related to the observations made by the students.

The daily training diary should be signed after every day or at least twice a week by the Faculty/ in charge of the section (external expert) where the student has been working.

Student's Diary should be submitted by the students along with attendance record. It shall be evaluated on the basis of the following criteria:

- 1. Regularity in the maintenance of the diary.
- 2. Adequacy and quality of information recorded.
- 3. Drawings, sketches and data recorded.
- 4. Thought process and recording techniques used.
- **5.** Organization of the information

Internship report:

After completion of Internship, the student shall prepare, with daily diary as reference, a comprehensive report in consultation with the mentor/s to indicate what he has observed and learnt in the training period along with the internship outcomes. The training report should be signed by the mentor.

The Internship report shall be evaluated on the basis of following criteria and/or other relevant criteria pertaining to the activity completed.

- 1. Originality.
- 2. Adequacy and purposeful write-up.
- 3. Organization, format, drawings, sketches, style, language etc.
- 4. Practical applications, relationships with basic theory and concepts taught in the appropriate course.
- 5. Variety and relevance of learning experience.

Assessment Rubrics:

Proposed Document as Evidence:

- 1. Students dairy
- 2. Internship report along with the certificate issued, if any.

Course Outcomes

By the end of course with aid of design data handbook students shall be able to,

- 1. Understand syntax and semantics of Python programming structure
- 2. Demonstrate the use of strings, files, lists, dictionaries, set and tuple in simple applications.
- 3. Write simple applications using regular expressions, files, dictionaries etc.
- 4. Analyze the given problem and select appropriate data types and modules to develop the solution..

		List of Programs	20 Hrs
	1.	Check given number is divisible by seven or not	
	2.	Check a given number is positive, negative or zero is not	
	3.	Accept three marks find the percentage of three marks and print the grade obtained	ed by
		student. Grade is assigned as A grade for marks>=80, B grade for marks>=60, C grade for mar	ade for
		marks>=40 otherwise D grade	
	4.	Find smallest of four numbers accept numbers from keyboard	
	5.	Read string from keyboard if it is alphabetic then check is it in uppercase if not con-	vert it to
		uppercase otherwise is it numeric if numeric print its binary representation	
	6.	Check the x and y coordinates lies on which quadrant or axis or on origin	
	7.	Find the roots of a quadratic equation ax ² +bx+c=0	
	8.	Count the number of vowels and consonant in the given input string	
		Check given number is prime or composite	
		Check given number is palindrome or not	
		Generate multiplication table between m to n. Read m and n from keyboard	
	12.	Generate all prime numbers between n to m excluding those prime that end with c	ligit 3. Use
		while with else and continue statement	
		Generate the first n terms of the Fibonacci series	
_		Print alphabet pattern 'T' and 'U'	
-		ed Output:	
-	atte ***	rn	
*	ኮጥጥ		
*			
*			
*			
*			
*			
Z pa	atte	rn	
***	***	*	
×	•		
*			
*			
*			
* ***	***	*	
		* It the pattern	
10.		it the puttern	

1 * * * * 1 2 * * *

123

1234

17. Check given number is Armstrong number or not

18. Evaluate the following sine series

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

19. Evaluate the following cosine series

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

20. Find sum of the numbers and odd and even count between the limit n and m

Reference Books:

- 1. Learning Python-B Nagesh Rao Python -Cyberplus Publication-1 edition 17 May 2017
- 2. Core Python Applications Programming-Wesley J. Chun-Pearson Education India, -Third Edition, 2015.
- 3. Introduction to Python Programming-Gowrishankar S. Veena A.-CRC Press Taylor & Francis Group-1st Edition 2019
- 4. Python Programming using problem solving approach-Reema Thareja-Oxford university press,-1st Edition 2017
- 5. Python for Everybody: Exploring Data Using Python 3-Charles R. Severance-CreateSpace Independent Publishing Platform-1st Edition, 2016.
- 6. Python Programming -Michael Urban and Joel Murach-Mike Murach Elizabeth Drake-1st Edition,2016

Question paper pattern for SEE:

- 1. Each laboratory subject is evaluated for 100 marks (50 CIE and 50 SEE).
- 2. The CIE in laboratory in classes is carried out for 50 marks (30 marks for the performance and term work)
- 3. For remaining 20 marks one practical test to be conducted.

The SEE practical is conducted for 50 marks two question to be set from each Part A (Process chart five marks + 15 marks for job) and Part B (Process chart and programming 15 marks + Virtual machining 5 marks). for 20 marks each and 10 marks Viva voce.

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes			Ρ	rog	ram	me	Out	con	nes	(POs))			Program Specific Outcomes (PSOs) 1 2 3 4 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - -		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	1	-	-	-	3	-	-	-	-	-	-	-	1	1	-	-
CO2	1	-	-	-	3	-	-	-	-	-	-	-	1	1	-	-
CO3	1	-	-	-	3	-	-	-	-	-	-	-	1	1	-	-
CO4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOTE- 587 102 Academic Year : 2022-23

IVth Semester B.E. (Mechanical Engineering)

Scheme of teaching and examination for B.E. I to VIII semesters (160 credits NEP) commencing from 2022 – 23 academic year (2021-22 admitted regular batch and Diploma Lateral Entry 2022-23 Batch).

SI.	Catagory	Subject Code				Hours/Wee	k	Exa	aminatior	n Marks
No.	Category	Subject Code	Subject	Credits	Lecture	Tutorial	Practical	CIE	SEE	Total
1.	BSC	21UMA402C	Partial differential equations and Statistics	3.0	3	-	-	50	50	100
2.	PCC	21UME 401 C	Material Science & Metallurgy	3.0	3	-	-	50	50	100
3.	PCC	21UME 402 C	Manufacturing Technology-II	3.0	3	-	-	50	50	100
4.	PCC	21UME 403 C	Fluid Mechanics	3.0	2	2	-	50	50	100
5.	PCC	21UME 404 C	Theory of Machines	3.0	2	2	-	50	50	100
6	PCC	21UME 405 L	Material Testing and Instrumentation Lab	1.0	-	-	2	50	50	100
7.	PCC	21UME 406 L	CAMD Lab	1.0	-	-	2	50	50	100
8.	PCC	21UME 407L	Fuels and IC Engine Lab	1.0	-	-	2	50	50	100
9.	AEC	21UXX XXX X	Soft Skill 1	1.0	1	-	-	50	50	100
10.	HSSM	21UXX XXX X	SK/BK or Cl	1.0	1	-	-	50	50	100
			Total	20	15	4	16	15	4	16

UNIT-I 10 Hrs **Structure of Crystalline Solids** Fundaments concepts of unit cell, space lattice, unit cells for cubic structure BCC, FCC and HCP, coordination number and atomic packing factor for BCC, FCC and HCP structures. Determination of APF for different crystal structures. Crystal imperfections – point, line, surface and volume defects. Diffusion mechanism, Fick's laws of diffusion. Concepts of stress and strain, tensile properties, Impact test of materials, Hardness - Rockwell, Vickers and Brinell hardness testing. Problems on true stress and true strain. UNIT – II 10 Hrs **Fatigue, Creep and Fracture** Fatigue: fracture tests, S-N curves, factors affecting fatigue life and protection methods. Creep: the creep curves, mechanism of creep, creep resistant materials. Types, stages in cup and cone fracture. Solid solutions Types, rules of governing the formation of solid solutions. Phase diagrams: basic terms, Gibbs phase rules, cooling curves, construction of phase diagrams, interpretation of equilibrium diagrams (use of tie line and Lever rule), types of phase diagrams (Eutectic systems, peritectic, eutectoid, peritectoid reactions). Problems on phase diagrams. UNIT - III 10 Hrs **Equilibrium phase Diagrams:** Iron – iron carbide equilibrium phase diagram, phases in Fe-Fe3C system, invariant reactions, microstructure of slowly cooled steels, effect of alloying elements on Fe-Fe3C diagram. The TTT diagrams, drawing of TTT diagrams, TTT diagrams for eutectoid steels, effect of alloying elements. Heat Treatment: Annealing, normalizing, hardening, Induction hardening, Carburizing, harden ability, Jominy endquench test. **UNIT IV** 10 Hrs **Engineering Alloys:** Properties, composition and uses of low carbon, mild medium and high carbon steels, cast Irons, gray CI, white CI, malleable CI, SG iron. The light alloys, Aluminium alloys. Smart materials, types, uses. **Composite Materials:** Definition and classification of composites based on matrix and reinforcement, Characteristics of composite materials, Fibrous composites, Laminate composites and particulate composites. Corrosion: Corrosion and its prevention: Galvanic cell, the electrode potentials, polarization, passivation. General methods of corrosion prevention by alloying, stress corrosion cracking. **Reference Books:** "Introduction to Material Science for Engineering", 6th edition James F. Shackel ford. Pearson, 1. Prentice Hall, New Jersy, 2006. 2. "Physical Metallurgy, Principles & Practices", V Raghavan.PHI 2nd Edition 2006, New Delhi. "Foundation of Material Science and Engineering", Smith, 3rd Edition McGraw Hill, 3. 1997. **Course Outcomes**** After completion of the course student will be able to **CO1:** Calculate atomic packing factor of different crystal structures and determine the hardness, true stress and true strain.

CO2: Solve problems on phase diagrams and interpret the phase diagrams. Analyze various modes of failures in materials.

CO3: Synthesize heat treated ferrous metal by annealing and normalising and illustrate iron – iron carbide equilibrium and non equilibrium phase diagrams.

CO4: Illustrate the composition and properties of various engineering alloys, smart materials, composite materials and the process of corrosion, its causes and preventive methods.

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes			Ρ	rog	ram	me	Out	con	nes	(POs)				rogram utcome		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	1	-	1	-	-	-	-	-	1	-	1	2	1	-	1
CO2	2	2	-	2	1	1	-	-	-	1	-	1	2	2	-	2
CO3	-		1	2	I	I	-	-	-	1	I	1	I	-	1	2
CO4	-	1	1		I	I	-	-	-	1	-	1	-	1	1	-

UNIT – I	10 Hrs
NC and CNC Machines: Fundamentals of NC Technology: Basic Components of NC System, NC Co-Ordinate system Motion control system,	,
Computer Numerical Control (CNC) : Features of CNC, The machine control units of CNC,CI DNC: Direct numerical control, Distributed numerical control.	NC Software
Engineering Analysis of NC positioning System: Open Loop positioning system, Closed Loc systems, Precision in NC Positioning.	op Positioni
NC Part programming: NC Coding system (EIA/ISO Format),Manual and Computer assisted Part programming.	I
APT programming, Basic Principles of APT Programming language. Applications of NC : Machine tool application, other NC applications. Programming Exam	ples.
UNIT – II	10 Hrs
advantages and disadvantages of rapid prototyping. Basics principles of Stereolithograp Selective Laser sintering, Fused deposition modelling, Laminated object manufacturing.	, -,
UNIT - III	10 Hrs
UNIT - III Group Technology Group Technology: History of group technology, Role of GT in CAD/CAM integration, Par classification and coding, DCLASS, MICLASS and OPITZ coding systems, Facility desigr Benefits of GT, Cellular manufacturing. Agile Manufacturing: Definition, business need, conceptual frame work, characteristics, generic features. Devel Manufacturing(Enterprise, Strategies, integration of organization, workforce and t reference models, examples.).	rt families - n using GT, loping Agile
Group Technology Group Technology: History of group technology, Role of GT in CAD/CAM integration, Par classification and coding, DCLASS, MICLASS and OPITZ coding systems, Facility desigr Benefits of GT, Cellular manufacturing. Agile Manufacturing: Definition, business need, conceptual frame work, characteristics, generic features. Devel Manufacturing(Enterprise, Strategies, integration of organization, workforce and t	rt families - n using GT, loping Agile technology, ds of CAPP, ion System, y, Safety &
 Group Technology Group Technology: History of group technology, Role of GT in CAD/CAM integration, Parclassification and coding, DCLASS, MICLASS and OPITZ coding systems, Facility design Benefits of GT, Cellular manufacturing. Agile Manufacturing: Definition, business need, conceptual frame work, characteristics, generic features. Devel Manufacturing(Enterprise, Strategies, integration of organization, workforce and treference models, examples.). CAPP: Introduction of Computer Aided Process Planning (CAPP), Variant & Generative method advantages of CAPP. [Only theory]. TPS: Introduction & History of the Toyota Production System, Goals of the Toyota Producti TPS Model Overview, Focus Areas of TPS, Eliminating Waste, Quality, Cost, Productivit Morale, Jidoka, Standardization, Just in Time, Pull Production, Kanban, Flow Production, 	rt families - n using GT, loping Agile technology, ds of CAPP, ion System, y, Safety &
Group Technology Group Technology: History of group technology, Role of GT in CAD/CAM integration, Par classification and coding, DCLASS, MICLASS and OPITZ coding systems, Facility desigr Benefits of GT, Cellular manufacturing. Agile Manufacturing: Definition, business need, conceptual frame work, characteristics, generic features. Devel Manufacturing(Enterprise, Strategies, integration of organization, workforce and t reference models, examples.). CAPP: Introduction of Computer Aided Process Planning (CAPP), Variant & Generative method advantages of CAPP. [Only theory]. TPS: Introduction & History of the Toyota Production System, Goals of the Toyota Producti TPS Model Overview, Focus Areas of TPS, Eliminating Waste, Quality, Cost, Productivit Morale, Jidoka, Standardization, Just in Time, Pull Production, Kanban, Flow Production, Reliability.	rt families - n using GT, loping Agile technology, ds of CAPP, ion System, y, Safety & Equipment 10 Hrs

1. Automation, Production system, And Computer Integrated Manufacturing Mikell P. Grover

Prentice hall of India Pvt. Ltd Second,2006

- 2. Rapid Prototyping, Principles and Application C K Chau, K F Leong and C S LIM World Scientific Publishing Co. Pte. Ltd. Second Edition, 2003
- **3.** Group Technology: Inyong Ham, Katsundo Hitomi, Springer Science & Business Media, 2012 Business & Economics 208 pages.
- 4. Flexible Manufacturing System H. K. Shivanand New Age International, 2006
- **5.** Rapid Prototyping Dr. M. Adithan Atlantic Publishers and Distributors Pvt Ltd Edition (1 January 2015).
- **6.** CAD/CAM/CIM P Radhakrishna,S Subramanian, V. Raju New Age International Publisher Third Edition,
- 7. Mastering CAD/CAM, Ibrahim zeid Tata McGraw Hill Second Edition 2009

Course Outcomes:

At the end of the course the student will be able to:

CO-1 Understand and apply the knowledge of NC Technology, CNC, DNC, NC Part programming, Engineering Analysis of NC positioning System, Applications of NC for simple required products and mechanical models .

CO-2 Understand and apply the knowledge of Rapid Prototyping, basic principle of rapid prototyping processes, Stereolithography systems Selective Laser sintering, Fused deposition modelling, Laminated object manufacturing, applications and for simple required products and mechanical models.

CO-3 Understand and apply the knowledge of Group Technology in CAD/CAM integration, Facility design using GT, Agile Manufacturing(Enterprise, Strategies, integration of organization, workforce and technology, reference models, examples.), Computer Aided Process Planning (CAPP), TPS(Toyota Production System) for simple required products and mechanical models.

CO-4 Understand and apply the knowledge of Flexible Manufacturing System, FMS planning and implementation issues, Quantitative analysis of FMS for simple required products and mechanical models .

Course		Programme Outcomes (Pos)/Programme Specific Outcomes (PSO)														
Outco	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PS	PS	PS	PS
mes	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03	04
(COs)																
1	2	2	-	-	-	-	2	1	2	2	1	2	2	2	1	-
2	2	2	2	-	-	-	2	1	2	2	1	2	2	2	2	-
3	2	2	1	-	-	-	2	1	2	2	1	2	1	1	2	-
4	2	2	2	-	-	-	2	1	2	2	1	2	2	2	1	-
	High -3, Medium – 2, Low - 1															

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

21UME403C		03 - Credits
L:T:P 2:2:0	FLUID MECHANICS	CIE Marks : 50
Total Hours/Week : 04		SEE Marks : 100

UNIT – I	13 Hrs
Properties of Fluids: Introduction, properties of fluids, viscosity, thermodynamic Surface tension and Capillarity, Vapour pressure and Cavitation, Numerical problem	
Fluid Statics: Fluid pressure at a point, Pascal's law, Pressure variation in a Absolute, gauge, atmospheric and vacuum pressures, Simple manometers, manometers, Total pressure and center of pressure, Vertical plane surface sub	static fluid, differential
liquid, Horizontal plane surface submerged in a liquid, Inclined plane surface sub liquid, Curved surface submerged in a liquid, Buoyancy, center of buoyancy, me metacentric height, Conditions of equilibrium for floating and submerged bodies problems.	omerged in a tacenter and
UNIT – II	13 Hrs
 Fluid Kinematics: Introduction, Types of fluid flow, Continuity equation, continuint in three dimensions (Cartesian co-ordinate system only), Velocity and accelerate potential function and stream function, Numerical problems. Dimensional Analysis: Introduction, Derived quantities, Dimensions of physical Dimensional homogeneity, Buckingham's ∏ theorem, Raleigh's method, D numbers, Similitude and types of similitude, Numerical problems. 	ion, Velocity al quantities,
UNIT – III	13Hrs
 Fluid Dynamics: Introduction, Equations of motion, Euler's equation Bernoulli's equation from Euler's equation, Bernoulli's equation for real fluids problems. Fluid flow measurements: Introduction, Venturimeter, Orifice meter and Pitot tub over rectangular and triangular notches, Numerical problems. Flow through pipes: Frictional loss in pipe flow, Darcy- Equation for loss of head definition. 	s, Numerical be, Discharge
in pipes, Chezy's equation for loss of head due to friction in pipes, Hydraulic gradie energy line, Minor loses in pipes, Sudden enlargement, Sudden contraction, Bend, Elbow, Numerical problems.	ent and total
UNIT – IV	13 Hrs
Laminar flow and viscous effects: Reynold's number, Critical Reynold's number, I through circular pipe-Hagen Poiseulle's equation, Laminar flow between parallelates, Numerical problems.	
Flow past immersed bodies: Drag, Lift, Expression for lift and drag, Pressure of drag, Boundary layer concept, Displacement thickness, Momentum thickness thickness, Numerical problems.	-
Introduction to compressible flow: Velocity of sound in a fluid, Velocity of sound Bulk modules, Velocity of sound for isothermal process, Velocity of sound for process.	for adiabatic
Mach number, Subsonic, Sonic and Supersonic flows, Propagation of disturbance Mach numbers, Mach cone, Stagnation properties, Stagnation Pressure, temperature, Area velocity relationship for compressible flow, Numerical problem	Stagnation

Reference Books:

- 1. Fluid Mechanics by Dr. Bansal.R.K, Lakshmi Publications, 2004
- 2. Fluid Mechanics (SI Units), Yunus A. Cingel John M. Oimbala. Tata McGraw-Hill, 2006
- 3. Fluid Mechanics and hydraulics, Dr. Jagadishlal: Metropolitan Book Co-Ltd., 1997.
- 4. Fluid Mechanics by OijushK.Kundu, IramCochen, Elsevier 3rd Edition. 2005.
- 5. Fluid Mechanics by John F.Douglas, Janul and M.Gasiosek and john A. Swaffield, Pearson Education Asia, 5th edition., 2006.
- 6. Fluid Mechanics and Fluid Power Engineering," Kumar.D.S Kataria and Sons., 2004.
- 7. Essential Computational Fluid Dynamics by Oleg ZiaanovPub: Jhon Wiley.

1000 Solved problems in Fluid Mechanics by Subramanya K, TMH, 2006.

Course Outcomes:

After completion of the course students shall be able to

CO1: Classify the types of fluids and calculate shear stress, pressure intensity, total pressure, centre of pressure, metacentre and metacentric height.

CO2: Differentiate between the types of fluid flow, similitude and calculate the velocity and acceleration aspects in a fluid flow applying continuity equation and dimensional analysis.

CO3: Evaluate the velocity as well as theoretical discharge using flow meters and losses in a pipes and conduits by applying Bernoulli's, Euler's, Darcy-Weisbach and Chezy's equations.

CO4: Differentiate between the viscous and compressible flows and evaluate the pressure loss, lift and drag and velocity of sound in a fluid flow.

Course				Prog	ramr	ne O	utco	mes	(Pos)				Program Specific Outcomes (PSOs)					
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4		
CO1	2	1	-	1	-	-	-	-	1	-	-	1	1	1	-	-		
CO2	2	1	-	1	-	-	-	-	1	-	-	1	1	1	-	-		
CO3	2	1	-	1	-	-	-	-	1	-	-	1	1	1	-	-		
CO4	2	1	-	1	-	-	-	I	1	-	-	1	1	1	-	-		

21UME404C		03 - C	redits	
L:T:P - 2 : 2: 0		CIE Marks : 50		
Total Hours/Week: 4	THEORY OF MACHINES	SEE Mai	rks : 50	
	UNIT – I		10 Hrs	
Introduction: DEFINITION	VS: Link or element, kinematic pairs, degrees	s of freedo	m, Grubler's	
criterion (without derivati	on), Kinematic chain, Mechanism, structure,	Mobility of	Mechanism,	
Inversion, Machine. kinem	natic chains and inversions: Inversions of Four	[,] bar chain;	Single slider	
crank chain and Double sli	der crank chain.			
MECHANISMS: Quick re	eturn motion mechanisms -Drag link m	nechanism,	Whitworth	
mechanism and Crank a	nd slotted lever Mechanism. Straight line	motion me	echanisms –	
Peaucellier's mechanism a	and Robert's mechanism. Intermittent Motior	n mechanisi	ms – Geneva	
mechanism and Ratchet	and Pawl mechanism. Toggle mechanism,	Pantograph	n, Ackerman	
steering gear mechanism.				
	UNIT – II		10 Hrs	
STATIC FORCE ANALYSIS:	Introduction: Static Equilibrium. Equilibrium	of Two and	Three Force	

Members. Members with Two Forces and Torque, Free Body Diagrams, Principle of Virtual of Four Bar Mechanism and Slider-Crank Mechanism with and Work. Static Force Analysis without friction.

BALANCING OF ROTATING MASS: Static and Dynamic Balancing, Balancing of Single Rotating Mass by Balancing Masses in Same plane and in Different planes. Balancing of Several Rotating Masses by Balancing Masses in Same plane and in Different planes.

GOVERNORS: Types of Governors: Force Analysis of Porter and Hartnell Governors. Controlling Force, Stability, Sensitiveness, Isochronism, Effort and Power

UNIT – III

UNIT-IV

GYROSCOPE: Vectorial Representation of Angular Motion, Gyroscopic Couple. Effect of Gyroscopic Couple on Ship, Plane Disc, Aeroplane, Stability of Two Wheelers and Four Wheelers.

GEAR TRAINS: Simple gear trains, Compound gear trains for large speed reduction, Epicyclic gear trains, Algebraic and tabular methods of finding velocity ratio of epicyclic gear trains. Tooth load and torque calculations in epicyclic gear trains.

CAMS: Types of cams, Types of followers, Displacement, Velocity and Acceleration time curves for cam profiles. Disc cam with reciprocating follower having knife -edge, roller and flat-faced follower, Disc cam with oscillating roller follower, Follower motions including SHM, Uniform velocity, uniform acceleration and retardation and Cycloidal motion.

Reference Bok:

- 1. Theory of Machines, Rattan S.S. McGraw-Hill Education, 2ndedition, 2005.
- 2. Theory of Machines, Sadhu Singh Pearson Education (Singapore) Pvt. Ltd., Indian Branch, New Delhi, 2ndedition, 2006.
- 3. Theory of Machines & Mechanisms, Shigley, J. V. and Uickers, J. OXFORDUniversity press.J, 3rd edition 2004
- Theory of Machines, Robert L. Norton, McGraw-Hill Higher Education, 3rd edition 2006 1.

Course Outcomes:

At the end of the course, the student will be able to:

CO1: Construct or Compose mechanisms to provide specific motion.

CO2: Apply the concepts of forces acting on the mechanisms.

CO3: Analyze the effect of a gyroscopic couple on Ship, Aeroplane and an Automobile. **CO4:** Analyze the concepts of gear trains and construct cam profile for the specific follower motion.

10 Hrs

10 Hrs

Question paper pattern for SEE:

- 1. Total of eight questions with two from each unit to be set uniformly covering the entire syllabus.
- 2. Each question should not have more than four subdivisions.
- 3. Any five full questions are to be answered choosing at least one from each unit.

Table: Matrix to describe the mapping of POs with Cos

Course			Р	rog	ram	me	Out	con	nes	(POs))			rogram utcom	-	
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	2	2	-	1	-	-	1	-	-	-	1	2	2	-	-
CO2	2	2	3	-	1	-	-	1	-	-	-	1	2	2	-	-
CO3	3	2	3	-	1	-	-	1	-	-	-	1	2	2	-	-
CO4	3	2	3	-	1	-	-	1	-	-	-	1	2	2	-	-
							F	ligh	-3, I	Mediu	ım – 2	2, Low	/ - 1			

21UME 405 L	IV Semester	01 - Credits (0 : 0 : 2)
Hrs./Week : 02	MATERIAL TESTING & INSTRUMENTATION	CIE Marks : 50
Total Hours : 20	LAB	SEE Marks : 50

	Part – A Material Testing	10 Hrs
	Brinell hardness test	
	Vickers hardness test	
-	Tensile test Compression test	
4. 5.	Izod impact test	
5.		
	PART – B Metrology and Instrumentation	10 Hrs
1	To calibrate load cell using standard loads	
2	To calibrate LVDT using micrometer screw gauge	
3	To calibrate the micrometer screw gauge suing standard slip gauges	
4	To find the effective diameter of the screw thread by three wire method	
5	To measure the taper angle of the conical specimen using standard roller set and s	lip gauges
		100
Schem	e for Examination:	
	uestion from Part A - 15 Marks (05 Writeup+10)	
	uestion from Part B - 25 Marks (05 Writeup+20)	
Viva-Vo	oce - 10 Marks	
Total 5	 0 Marks	
	e Outcomes**	
CO1: D	etermine the tensile and compression strength of materials using UTM	
	etermine the various mechanical properties like hardness and impact strength of the	2
m	aterials	
CO3: C	alibrate various measuring instruments like LVDT micrometer screw gauge load cell	
CO4: D	evelop the ability to apply the principles in instruments and measuring techniques	

Table: Matrix to describe the mapping of POs with COs

Course			Ρ	rog	ram	me	Out	tcon	nes	(POs))			rogram utcome	-	
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	2	-	-	1	-	-	-	-	-	1	1	3	2	-	-
CO2	3	2	-	-	1	-	-	-	-	-	1	1	3	2	-	-
CO3	1	1	-	-	1	-	-	-	-	-	1	1	1	1	-	-
CO4	1	1	-	-	1	-	-	-	-	-	1	1	1	1	-	-

21UME 406 L	N/ Comparison	02 - Credits
L:T:P - 0 : 0: 2	IV Semester	CIE Marks : 50
Total Hours /Week: 2	CAMD LAB	SEE Marks : 50

	Part – A	5 Hrs
Outhor		2 112
-	rraphic views: rsion of pictorial views into orthographic projections of simple machine parts with	or without
	. (Bureau of Indian Standards conventions are to be followed for the drawings)	
	itions. Precedence of lines.	
	PART - B	6 Hrs
Keys, J	oints & Couplings:	
	l key, Taper key, Feather key, Gibhead key and Woodruff key.	
Flange	d coupling and universal coupling (Hooks' Joint)	
	PART - C	9 Hrs
	bly Modeling and Drafting (Part drawings should be given) Any four	
	Plummer block (Pedestal Bearing)	
	I.C. Engine connecting rod	
	Screw jack (Bottle type) Tailstock of lathe	
	Machine vice	
	Tool Head of shaper	
Refere	nce Books:	
1.	'A Primer on Computer Aided Machine Drawing-2007', Published by VTU, Belgaum	l .
2.		
3.	'Machine Drawing', N. Siddeshwar, P. Kanniah, V.V.S. Sastri, published by	Tata Mc
	GrawHill,2006	
4.	'A Text Book of Computer Aided Machine Drawing', S. Trymbaka Murthy, CBS P	ublishers,
-	New Delhi, 2007	
5.	'Machine Drawing', K.R. Gopala Krishna, Subhash Publication.	
-	tion paper pattern for SEE:	
	Each laboratory subject is evaluated for 100 marks (50 CIE and 50 SEE).	
2.	The CIE in laboratory in classes is carried out for 50 marks (30 marks for the perfor term work)	mance and
3	For remaining 20 marks one practical test to be conducted.	
5.	The SEE practical is conducted for 50 marks two question to be set from eac	h Part A
	(Process chart five marks + 15 marks for job) and Part B (Process chart and prog	
		0
	15 marks + Virtual machining 5 marks). for 20 marks each and 10 marks Viva voce.	
	Note: There is no Theory Examination. Examination is only for CAMD Laboratory	
Lab	oratory Assessment:	
1.	Each laboratory subject is evaluated for 100 marks (50 CIE and 50 SEE).	
2.	The CIE in laboratory in classes is carried out for 50 marks (30 marks for the perfor	mance and
_	term work)	
3.	For remaining 20 marks one practical test to be conducted for sketching and prin	ntouts from
	SOLID EDGE.	
The SF	E practical is conducted for 50 marks of three hour duration one question to be set	from Part A

or Part B and one assembly question from Part C. Student has to answer all the question.Part A or Part B for 20 marks and Part C for 30 marks.

Course Outcomes

CO1: Summarize the sketching, navigational, modeling, assembly commands used in SOLID EDGE software.

CO2: Predict the conversion of pictorial views into orthographic projections of simple machine parts with or without section.

CO3: Model solid models (3D drawings) of machine parts like joints and couplings

CO4: Analyze and assemble the machine components and convert to 2D drawings in assembly or in single unit.

CO5: Employ the information prepared by industry/customer to construct functioning of the mechanical system

Course				Pro	gram	nme	Out	com	nes (POs)				-	Specifi es (PSOs	
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	1	-	-	-	2	-	-	-	-	-	-	1	1	-	-	1
CO2	1	-	-	-	2	-	-	-	-	-	-	1	1	-	-	1
CO3	1	-	-	-	2	-	-	-	-	-	-	1	1	-	-	1
CO4	1	-	-	-	2	1	-	-	-	-	-	1	1	-	-	1
CO5	1	-	-	-	2	-	-	-	-	I	-	1	1	-	-	1

21UME 407 C	N/ Comparison	01 - Credits
L: T: P: 0: 0: 2	IV Semester	CIE Marks : 50
Teaching Hours/ Week : 02	FUELS & IC ENGINE LAB	SEE Marks : 50

Part – A

Individual Experiments

- 1. Determination of Flash point and Fire point using Abel / Clevland / Pensky Martins Apparatus.
- 2. Determination of Viscosity using Redwood viscometer
- 3. Determination of Viscosity using Saybolt's viscometer.
- 4. Determination of Cloud and Pour point
- 5. Determination of Carbon residue by Conradson fuel apparatus.
- 6. Determination of Density of oil/fuel.
- 7. Distillation of fuel.

PART - B

Group experiments

- 1. Performance tests on I. C. Engines, calculations of IP, BP, FP, thermal efficiencies, mechanical efficiency, volumetric efficiency, air fuel ratio, SFC, BSEC, heat balance sheet for Twin cylinder four stroke diesel engine .
- 2. Performance tests on I. C. Engines, calculations of IP, BP, FP, thermal efficiencies, mechanical efficiency, volumetric efficiency, air fuel ratio, SFC, BSEC, heat balance sheet for Single cylinder four stroke diesel engine.
- **3.** Performance tests on I. C. Engines, calculations of IP, BP, FP, thermal efficiencies, mechanical efficiency, volumetric efficiency, air fuel ratio, SFC, BSEC, heat balance sheet for four stroke petrol engine.

Scheme for Examination:

One Question from Part A - 15 Marks (05 Writeup+10) One Question from Part B - 25 Marks (05 Writeup+20) Viva-Voce - 10 Marks

Total 50 Marks

Course Outcomes:

After taking this course the students shall be able to

CO1: Demonstrate the ability to conduct, to measure and to calculate/analyze properties like flash point & fire point and cloud point & pour point of oil/fuel

CO2: Demonstrate the ability to conduct, to measure and to calculate/analyze properties like viscosity and carbon residue of oil/fuel

CO3: Demonstrate the ability to calculate the effect of operating parameters on the performance of CI engines

CO4: Demonstrate the ability to calculate the effect of operating parameters on the performance of SI engines

Course							Progr	amm	e Outo	comes	(POs)					
Outco	РО	РО	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PS	PS	PS	PS
mes	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03	04
(COs)																
1	1	1	-	-	-	1	-	1	1	-	-	-	-	1	-	-
2	1	1	-	-	-	1	-	1	1	-	-	-	-	1	-	-
3	1	2	-	1	-	1	-	1	1	-	-	1	1	1	-	-
4	1	2	-	1	-	1	-	1	1	-	-	1	1	1	-	-

BASAVESHWAR ENGINEERING COLLEGE, BAGALKOTE- 587 102

Academic Year : 2023-24

Vth Semester B.E. (Mechanical Engineering)

Scheme of teaching and examination for B.E. I to VIII semesters (160 credits NEP) commencing from 2023 – 24 academic year (2021-22 admitted regular batch and Diploma Lateral Entry 2022-23 Batch).

SI.						Hours	/Week	E	xaminatio	on Marks
No.	Category	Subject Code	Subject	Credits	Lecture	Tutorial	Practical	CIE	SEE	Total
1.	PCC	21UME 501 C	Design of Machine Elements	3.0	2	2	-	50	50	100
2.	PCC	21UME 502 C	Energy Conversion Technology	3.0	2	2	-	50	50	100
3.	PCC	21UME 503 C	Operations Research	3.0	2	2	-	50	50	100
4.	PCC	21UME 504 L	Fluid Mechanics and Machinery Lab	1.0	-	-	2	50	50	100
5.	PEC	21UME XXX E	Elective - I	3.0	3	-	-	50	50	100
6	OEC	XXXX XXX X	Open Elective - I	3.0	3	-	-	50	50	100
7.	HSSM	21UME 507 H	Management and Entrepreneurship	3.0	3	-	-	50	50	100
8.	INT	XXXX XXX X	Summer Internship-II	2.0	-	-	-	50	50	100
9.	AEC	XXXX XXX X	Soft Skill 2	1.0	1	-	-	50	50	100
			Total	20				450	450	900

INT: Summer Internship – II.

For awarding B.E. (Mechanical Engineering) degree, each student is required to complete minimum of 04 weeks of Internship during 4th semester summer to earn 02 credits which will be awarded during 5th Semester.

OEC: Open Elective – I is offered by other departments to Mechanical Engineering Students.

	C: Elective – I ny one elective from the following table	Offered by Mechanical Engineer	Elective – I ing Department to Other Department sudents
Subject Code	Subject	Subject Code	Subject
21UME 511 E	Non Traditional Machining	21UME521N	Operations Research
21UME 512 E	Theory of Automotive Engines	21UME522N	Product Design and Rapid Prototyping
21UME513 E	Non Conventional Energy		

5 – 8 Sem Syllabus as per NEP_ Mechanical Engineering _BE_ Dated: 05.05.2023

21UME501 C		03 - C	redits
L:T:P - 2 : 2: 0	DESIGN OF MACHINE ELEMENTS	CIE Ma	rks : 50
Total Hours/Week: 4	DESIGN OF MACHINE ELEMENTS	SEE Ma	rks : 50
	1		_
	Unit - I		12 Hrs
Engineering Materials and th considerations: Codes and Sta Design for Static strength Static loads and Factor of Saf	axial and Triaxial Stresses, Stress Tensor, Prin neir Mechanical properties, Stress-Strain dia andards. fety, Theories of failure. Maximum Normal S ergy Theory Failure of Brittle Materials, Failu	grams, Stress A Stress Theory, N	/laximum Shea
Concentration, Determination	n of Stress Concentration Factor.		
	UNIT - II		8Hrs
Fluctuating Stresses, Goodn Cumulative Fatigue Damage. Design of Threaded Fasteners		due to Com	bined Loading
Fluctuating Stresses, Goodn Cumulative Fatigue Damage. Design of Threaded Fasteners Stresses in Threaded Fastener	nan and Soderberg relationship, Stresses	due to Com	bined Loading
Fluctuating Stresses, Goodn Cumulative Fatigue Damage. Design of Threaded Fasteners Stresses in Threaded Fastener	nan and Soderberg relationship, Stresses s: rs, Effect of Initial Tension, Design of Threade	due to Com	bined Loading
Fluctuating Stresses, Goodn Cumulative Fatigue Damage. Design of Threaded Fasteners Stresses in Threaded Fastener Dynamic and Impact loads, De Design of Shafts: Torsion of Shafts, Design for	nan and Soderberg relationship, Stresses s: rs, Effect of Initial Tension, Design of Threade esign of Eccentrically loaded Bolted Joints.	due to Com ed Fasteners un ASME & BIS co	bined Loading der Static, 10 Hrs
Fluctuating Stresses, Goodn Cumulative Fatigue Damage. Design of Threaded Fasteners Stresses in Threaded Fastener Dynamic and Impact loads, De Design of Shafts: Torsion of Shafts, Design for	nan and Soderberg relationship, Stresses s: rs, Effect of Initial Tension, Design of Threade esign of Eccentrically loaded Bolted Joints. Unit - III	due to Com ed Fasteners un ASME & BIS co	bined Loading der Static, 10 Hrs

- 4. M. F. Spotts, T. E. Shoup, L. E. Hornberger, (2006) Design of Machine Elements, Pearson Education
- 5. Robert C. Juvinall and Kurt M Marshek, (2007)Fundamentals of Machine Component Design (3rd Edition), Wiley India Pvt. Ltd., New Delhi
- 6. Joseph E Shigley and Charles R. Mischke (2003), Mechanical Engineering Design (6th Edition). McGraw Hill International edition

5 – 8 Sem Syllabus as per NEP_ Mechanical Engineering _BE_ Dated: 05.05.2023

Course Outcomes:

At the end of the course the student should be able to:

- **CO 1.** Summarize the terminologies and preliminary concepts related to normal, shear, biaxial, tri axial and principal stresses.
- **CO 2.** Apply the concepts of stress analysis, theories of failure and material science to select commonly used machine components under different condition of failure.
- CO 3. Design the shafts subject to combined static and dynamic load failures
- **CO 4.** Design the springs, gears by identifying the failure modes

Course				Pro	gran	nme	Outo	come	es (PC	Os)			Program Specific Outcomes (PSOs)							
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4				
CO1	1	1	2	-	1	-	-	1	-	-	-	1	2	2	-	-				
CO2	2	2	3	-	1	-	-	1	-	-	-	1	2	2	-	-				
CO3	3	2	3	-	1	-	-	1	-	-	-	1	2	2	-	-				
CO4	3	2	3	-	1	-	-	1	-	-	-	1	2	2	-	-				

21UME 502 C		03 - Credits
L:T:P - 2 _L : 2 _T : 0 _P	ENERGY CONVERSION ENGINEERING	CIE Marks : 50
Total Hours/Week: 04		SEE Marks : 50

Unit - I	10 Hrs									
Introduction:										
Definition of turbomachine, Parts of a turbo machine, Comparison with positive displacement machine, Classification of turbomachines, Application of dimensional analysis to turbomachines and their physical significance, specific speed for power absorbing and power developing machines, Numerical problems on dimensional analysis and model studies.										
Energy Transfer in Turbomachines:										
Euler turbine equation, Alternate form of Euler turbine equation, Components of energy transfer,										
Degree of reaction, General analysis of a turbo machine, Effect of blade discharge angle or	n energy									
transfer and degree of reaction, General analysis of turbines (axial flow machines), Utilizat	•••									
Relation between utilization factor and degree of reaction, Condition for maximum efficie	ncy,									
Condition for maximum utilization factor, Optimum blade speed ratio and maximum energy	gy transfer,									
Numerical problems on above topics										
UNIT - II	10 Hrs									
done, Power, Stage pressure rise, Degree of reaction, Numerical problems on above topics Centrifugal Working principle, Main parts of a centrifugal pump, Classification, Head, Static head, head, Pump Efficiencies, Manometric, Mechanical, Hydraulic, Volumetric and Overall efficience by the pump, Pressure rise in a pump, Minimum starting speed, Multistage pumps Numerical problems on above topics.	Manometric ciency; Work									
Unit - III	10 Hrs									
	TOHLZ									
 Steam and Gas Turbines: Impulse staging and need for compounding, Compounding, Velocity, Pressure, Velocity and pressure compounding, Impulse turbine, Performance parameters, Effects of friction and blade angles on blade efficiency, Condition for maximum efficiency, Maximum efficiency and work done, Numerical problems on above topics. Multistage impulse turbine (two stage): Work done, Blade efficiency, Condition for maximum efficiency, Maximum blade efficiency, Maximum work done, Maximum utilization factor with equiangular blades, Numerical problems on above topics. Reaction turbines: Degree of reaction, Condition for maximum efficiency (without carry over efficiency), Maximum efficiency, Maximum utilization factor, Maximum utilization factor, Maximum utilization factor, Blade design parameters, Numerical problems on above topics. 										
Unit - IV										
	10 Hrs									

5 – 8 Sem Syllabus as per NEP_Mechanical Engineering _BE_ Dated: 05.05.2023

Hydraulic Turbine:

Unit quantities, Terminology,Pelton Wheel, Velocity triangle, Power developed, Hydraulic efficiency, Condition for maximum hydraulic efficiency, Maximum hydraulic efficiency, Turbine efficiency, Hydraulic, Mechanical, Volumetric and Overall efficiency, important design parameters. Numerical problems on above topics.

Francis and Kaplan turbines:

Velocity triangle, Runner shapes for different blade speeds (blade angles), Design parameters, Draft tube and types draft tubes, functions of a draft tube, Efficiency of a draft tube, Kaplan and Propeller turbines, Velocity triangles, Design parameters, Numerical problems on above topics.

Reference Books:

- 1. Principles of Turbomachinery, D.G.Shephered, The Macmillan Company, Newyork, 1964.
- 2. An Introduction to energy Conversion Volume III Turbo machinery, A. Kadambi and Manohar Prasad, New Age International publishers, 1977.
- 3. Turbines, Compressors and Fans, S.M.Yahya, Tata McGraw Hill Company ,2nd Edition, 2002.
- 4. Gas Turbine Theory, H.Cohen, GFC Rogers and HIH Saravanamuttoo, Thomson Press (India) Ltd. 4th Edition, 1998.
- 5. Gas Turbines, V.Ganeshan, Tata Mc Graw Hill, 2nd edition, 2002.
- 6. A Treatise on Turbo machines, G.Gopalaksrihsna and D. Prithiviraj, Scitech Publications (India) PVT., Limited, 2002.
- 7. Text book of Turbomachines, By M.S. Govindegowda and A.M. Nagaraj, M.M.Publishers, Davangere, Karnataka.

Course Outcomes:

After completion of the course student will be able to

- **CO1:** Understanding of basics of Turbo Machines and their functioning and selection. Identify various types of rotating machines and discuss the importance of dimensionless numbers in turbo machines.
- **CO2:** Develop a governing equation for rotating machinery and Apply the energy governing equation to analyze energy transfer in power producing turbomachines.
- **CO3:** Understand the principle of operation of pumps and Apply the knowledge to analyze the power absorbing turbomachine (Centrifugal machines)
- **Co4:** Understand the principle of compounding and analyze performance and energy transfer in impulse and reaction steam turbines.
- **Co5:** Understand the functioning of hydraulic turbines and analyze the performance of the hydraulic turbines (Pelton, Francis and Kaplan water turbines)

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes			Ρ	rog	ram	me	Out	tcon	nes	Program Specific Outcomes (PSOs)						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	1	2	-	-	-	-	-	-	-	-	-	-	3	-	-	-
CO2	3	2	1	-	-	1	1	1	-	-	-	1	3	2	1	1
CO3	3	2	3	-	-	1	1	1	-	-	-	1	3	2	1	1
CO4	3	2	2	-	-	1	1	1	-	-	-	1	3	2	1	1
CO5	3	2	2	-	-	1	1	1	-	-	-	1	3	2	1	1

21UME 503 C		03 - Credits		
L:T:P – 2: 2 : 0	OPERATIONS RESEARCH	CIE Marks : 50		
Total Hours/Week: 04		SEE Marks : 50		

Unit - I	10 Hrs
INTRODUCTION Definition, scope of Operations Research (OR) approach and limitations of OR Models, and phases of OR	Characteristics
LINEAR PROGRAMMING PROBLEMS 09 Hours Linear programming, graphical m method, Two-phase method, duality theory, dual simplex method.	
UNIT - II	10 Hrs
TRANSPORTATION PROBLEMS Mathematical model for Transportation problem, balanced and unbalanced transport Methods to solve transportation problem, finding basic feasible solution, testing solution ASSIGNMENT PROBLEMS Formulation, unbalanced assignment problem, travelling salesman problem	
Unit - III	10 Hrs
Johnson's algorithm, n - jobs to 2 machines, n - jobs 3machines, n -jobs m machines v sequence. 2 jobs n machines with passing. Graphical solutions priority rules. PERT-CPM TECHNIQUES: Project network construction, Critical Path Method (CPM), determination of critical Evaluation and Review Technique (PERT), probability of completing a project in a schedule	path, Project
Unit - IV	10 Hrs
GAME Laws of Probability, Formulation of games, two people-Zero sum game, games with and point, Graphical solution (2x n, m x 2 game), and dominance property.	THEORY without saddle
REPLACEMENT MODELS Introduction, replacement of items whose maintenance and repair costs increase with changes in the value of money during the period, replacement of items whose main increase with time and value of money also changes with time, replacement of items that group replacement policy.	ntenance costs
 REFERENCE BOOKS: 1. Operations Research, Prem Kumar Gupta, D S Hira, 3rd Edition, S Chand and Com Delhi, 2008. 2. Introduction to O.R , Taha - PHI 2010 3. Operations Research, Panneerselvam R, Prentice – Hall of India, New Delhi, 2002 4. Operation Research, A M Natarajan, P. Balasubramani, A Tamilaravari Pearson 20 5. Operations Research, S. D. Sharma, Kedarnath Ramanath and Co, 2002 6. Operations Research, Manohar Mahajan, Dhanpat Rai & Co. New Delhi, 2009 	

7. Operation Research, J.K.Sharma-, MacMilan 2010
Course Outcomes:
Course Outcomes: At the ed of the course, the student will be able to:
 CO1: Identify and appropriately formulate Linear Programming models for service and manufacturing systems from the verbal description of the real system, and apply operations research techniques and algorithms to solve these LP problems. CO2: Identify and understand the mathematical models and apply operations research techniques and algorithms to solve optimization problems like assignment, transportation, travelling salesman etc.
 CO3: Appropriately formulate Network and sequencing models for service and manufacturing systems, and apply operations research techniques and algorithms to analyse these problems. CO4: Enlighten to understand Multi-criteria decision techniques for the conflicts situation management and decision making under uncertainty and risk for the replacement of varied itoms.
items.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes			Ρ	rog	ram	me	Out	con	nes	(POs))		Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	
CO1	3	1	1	-	2	1	-	-	1	-	1	-	2	-	1	1	
CO2	2	1	-	-	1	1	-	-	1	-	1	-	2	-	1	1	
CO3	2	1	1	-	2	1	-	-	1	-	2	-	2	-	1	1	
CO4	1	1	1	-	1	1	-	-	1	-	-	1	2	-	1	1	

21UME 504 L		01 - Credits
L: T: P: 0: 0: 2	FLUID MECHANICS AND MACHINERY	CIE Marks : 50
Total Hours/Week: 02	LAB	SEE Marks : 50

Part – A	10 Hrs										
Calibration of flow measuring device: (any 3) Calibration of flow measuring device: (any 3) Orifice plate											
Flow nozzle											
Venturimeter											
Rotameter											
V- Notch											
Determination of co efficient of friction of flow through pipe											
Determination of minor losses (Sudden Expansion, Sudden Contraction, Bend and Elbow) in flow											
through pipes											
Determination of force developed by impact of jets on vanes											
PART - B	10 Hrs										
Group experiments											
Performance testing of turbines											
Pelton wheel,											
Francis turbine											
Performance testing of pumps											
centrifugal pump											
Reciprocating pump											
Performance test on two/single stage reciprocating air compressor											
Performance test on air blower											
Course Outcomes:											
C01 Defne, apply and analyse coefficient of discharge of Venturimeter and Orificemet	er.										
CO2 Aanalyse efficiency of centrifugal pump and Reciprocating pump.											
CO3 Aanalyse efficiency of Pelton wheel and Francis Turbine.											
CO4 Analyse major losses and minor losses											
Scheme for Examination:											
One Question from Part A - 15 Marks (05 Writeup+10)											
One Question from Part B - 25 Marks (05 Writeup+20)											
Viva-Voce - 10 Marks											
Total 50 Marks											

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes			Ρ	rog	ram	me	Out	con	nes	(POs))		Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	
CO1	1	2	1	1	3	1	2	2	3	1	1	1	1	2	1		
CO2	3	2	3	-	1	2	-	1	3	2	3	2	1	2	2		
CO3	1	1	2	1	1	3	-	1	2	2	3	1	1	1	1		
CO4	3	2	3	2	3	1	2	-	3	1	2	1	1	1	2		

21UME 507 H		03 - Credits
L:T:P - 3 : 0: 0	MANAGEMENT & ENTREPRENEURSHIP	CIE Marks : 50
Total Hours/Week: 40	ENTREPRENEURSHIP	SEE Marks : 50

Function Levels of Planning only), Im Organiz organiza		f Manager, iches. s (Meaning											
only), Im Organiz organiza	nportance of planning – steps in planning & planning premises	-											
organiza	UNIT – II	Planning : Nature, importance and purpose of planning process, Objectives, Types of plans (Meaning only), Importance of planning – steps in planning & planning premises 10 Hrs UNIT – II 10 Hrs											
organiza													
Organizing and Staffing : Nature and purpose of organization, Principles of organization, Types of organization, Departmentation, Committees, Nature and importance of staffing, Process of Selection & Recruitment (in brief).													
Motivation and Behavior : Hawthorns studies and its findings, Maslow's theory, X and Y theory, Immaturity theory motivation hygiene theory, McClelland"s theory of motivation.													
	UNIT - III	10 Hrs											
Controlli establish Entrepre types),	g and importance, Coordination: meaning and importance and Techniques of Co- ling: Meaning and steps in controlling, Essentials of a sound control system, N hing control (in brief). eneur : Meaning of Entrepreneur, Functions of an Entrepreneur, Types of Entrepre Role of entrepreneurs in Economic Development, Entrepreneurship eneurship: its Barriers.	Methods of											
	UNIT IV	10 Hrs											
SSI in Ec SSI, Diffe Governn Quality I	ONITIVTo HrsSmall Scale Industries (SSI): Definition, Characteristics, Need and rationale, Objectives, Scope, role of SSI in Economic Development. Advantages of SSI Steps to start and SSI, Government policy towards SSI, Different Policies of SSI, Government Support for SSI during 5 year plans. Supporting Agencies of Government for SSI, Meaning, Nature of support, Objectives, Functions (brief).Quality Philosophy:The Meaning of Quality and Quality Improvement, Brief History of Quality Methodology, Statistical Methods for Quality Control and Improvement												
Referen	ice Books:												
1. Ha	larold Koontz, (2010), Essentials of Management, (Eighth edition), Tata McGraw-Hi	II											
	oornima M. Charantimath, (2015), Entrepreneurship Development and Sma nterprises, (Third edition), Pearson Education India	ll Business											
3. н	larold Koontz, Cyril O'Donnell, (2018), Principles of Management, (Fifth edition), M	cGraw Hill											
	. C. Tripathi and P. N. Reddy, (2012), Principles of Management (Fifth edition), Ta Iill	ta McGraw											
5. D	ouglas C. Montgomery, (2019), Introduction to Statistical Quality Control (Eigh Viley international	th edition),											

Course Outcomes**:

At the end of the course, the student will be able to:

- **CO1** Demonstrate the ability of understanding, the nature, purpose, evolution, patterns of management. Analyze the purpose of planning, distinguish different plans and able to describe the detailed process of planning.
- **CO2** Identify and apply the nature and purpose of organizing, Departmentation, Staffing, Human factors and motivation.
- **CO3** Express the need of Leadership, concepts of directing and controlling, Demonstrate the importance of Entrepreneurship, role of Entrepreneur, Characteristics, and Classification of Entrepreneurs.
- **CO4** Develop the knowledge of small-scale industries, characteristics, role, and government support and quality philosophy.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course			Р	rog	ram	me	Program Specific Outcomes (PSOs)									
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	-	-	-	-	-	-	-	2	-	-	-	-	-	1	-
CO3	1	-	-	-	-	2	2	-	-	3	1	-	-	1	1	-
CO4	1	-	-	-	-	2	2	-	-	I	-	1	1	2	1	I

21UME 511 E		03 - Cred	03 - Credits									
3-0-0	NON-TRADITIONAL MACHINING	CIE Marks	: 50									
Total Hours/Week: 03		SEE Marks	: 50									
	UNIT – I		09 Hrs									
Introduction to ND Testing:												
Information gathered from NDT	, Defects in manufacturing Advantages and	d disadvantages o	of									
NDT, Comparison of destructive	& Non-destructive tests, Methods of NDT,	, Common										
application of NDT, Flaw detection & evaluation, leak detection & evaluation, Non												
Destructive Evaluation, visual inspection												
	ue for Non Destructive Evaluation: Specin	nen preparation,										
replication techniques, and micro structural analysis												
	UNIT – II		09 Hrs									
Liquid Penetrant Inspection: Principles, penetrant methods, procedure, materials used,												
equipment, parameters and app												
Magnetic Particle Inspection: P	rinciple, general procedure, advantages &	limitations ,										
	eration, types of magnetic particles and su	spension liquids,										
Direction of the Magnetic Field,	Importance of Magnetic Field Direction											
	UNIT - III		09 Hrs									
Radiography Inspection: princip	ole, X-ray radiography, equipment, Gamma	-ray radiography.										
	liography, radiation safety, advantages, di											
applications of radiography												
	les, capabilities, comparison to other NDE	methods, CT										
equipments, industrial compute												
	UNIT IV		12 Hrs									
Ultrasonic inspection: Basic equ	ipment, advantages & limitations, inspecti	on methods puls	e									
echo A, B, C scans transmission	transducers & couplants											
	equipment, inspection methods applicatio											
	ciples of operation, procedure, advantage		operating									
variables, inspection coils, eddy	current instruments, application examples	5.										
Reference Books:												
1. Mc Gonnagle Jj, Non De	structive –Garden And Reach Newyork.											
	on And Quality Control Volume 17 Metal	s Hand Book 9t	h Edition ,									
American Society Of Me	tals 2001.											
Course Outcomes **:												
At the end of the course studen	t will be able to											
	of surface N D E techniques which enable	to carry out vario	ous									
	vith the established procedures.											
	t types and select the appropriate N D T m	ethods for bette	er									
evaluation												
	ing and evaluation of the results for furthe	er analysis,										
disadvantages and limitatio												
	derstand significance and suitability of var	ious non										
destructive testing method	s in muustrial application.											

5-8~Sem~Syllabus as per NEP_ Mechanical Engineering _BE_ Dated: 05.05.2023

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes			Р	rog	ram	me	Out	con	nes	(POs))		Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	
CO1	3	1	-	3	2	-	3	1	3	1	-	3	2	3	3	3	
CO2	2	1	-	1	1	1	2	-	3	-	-	3	2	2	-	3	
CO3	3	-	-	2	-	1	1	2	2	I	I	2	1	-	2	2	
CO4	1	2	1	2	-	-	-	1	-	2	1	1	1	2	2	-	

21UME 512 E		03 - Credits
L:T:P - 3 : 0 : 0	Theory of Automotive Engines	CIE Marks : 50
Total Hours/Week: 03		SEE Marks : 50

UNIT – I	10 Hrs
Introduction : Historical development of automobiles. Types of power plant, principle operation. Classification of engines; V- engines, stratified charge engines, variable comprengine.	-
Fuel air cycles: Uses of fuel air cycle, variation of specific heats, dissociation, compa diagram of air standard cycle and fuel air cycle for SI engine, thermal efficienc consumption, effect of variables.	
Two stroke and four stroke engines: Principles of engine operation (SI and CI), scavenging theoretical processes, parameters, relative merits and demerits, valve and port timing diag	•
UNIT – II	10 Hrs
Liquid fuels: Properties and tests: specific gravity, viscosity, flash and fire points, cale rating of fuels. Petrol fuel: Octane number, chemical energy of fuels, reaction equation, volatility properties of fuels.	
mixture, combustion temp, combustion charts.	
Combustion in SI engines: Ignition limits, stages of combustion, ignition lag, effect of engine on ignition lag, effect of variables on flame propagation, abnormal combustion, detonation detonation, effect of engine variables on detonation, control of detonation, CFR engine, k of SI engine fuels, surface ignition, SI engine.	n, theory of
UNIT - III	10 Hrs
Diesel fuels: Properties and rating of fuels; cetane number, chemical energy of fue equation, properties of A/F mixture, combustion temp, combustion charts. Vapor pressure pour point, annealing point, diesel index, carbon residue.	
Combustion in Cl engines: Stages of combustion, air fuel ratio in Cl engines, delay perio affecting delay period, diesel knock, methods of controlling diesel knock, Cl combustion open and divided. Induction swirl, turbulent combustion chambers, types, M - combustion	n chambers,
affecting delay period, diesel knock, methods of controlling diesel knock, CI combustion	n chambers,
affecting delay period, diesel knock, methods of controlling diesel knock, CI combustion open and divided. Induction swirl, turbulent combustion chambers, types, M - combustion	the chambers, the chamber. 10 Hrs combustion. and engines.
affecting delay period, diesel knock, methods of controlling diesel knock, CI combustion open and divided. Induction swirl, turbulent combustion chambers, types, M - combustion UNIT IV Dual fuel and multi-fuel engines: Combustion in dual fuel engines, factors affecting of Main types of gaseous fuels, supercharge knock control and performance of diesel fu Characteristics of multi fuel engines, modification of fuel system, suitability of various	the chambers, the chamber. 10 Hrs combustion. the lengines. engines as
affecting delay period, diesel knock, methods of controlling diesel knock, CI combustion open and divided. Induction swirl, turbulent combustion chambers, types, M - combustion UNIT IV Dual fuel and multi-fuel engines: Combustion in dual fuel engines, factors affecting of Main types of gaseous fuels, supercharge knock control and performance of diesel fu Characteristics of multi fuel engines, modification of fuel system, suitability of various multi fuel unit, performance of multi fuel engines. Engine performance: Performance parameters BHP, FHP, IHP, specific fuel consumption, efficiency, thermal efficiency, specific weight, heat balance sheet, testing of engines	a chambers, chamber. 10 Hrs combustion. ael engines. engines as

&Combustion by

- 2. Smith & Stinson,
- 3. I.C. Engines by Lichty
- 4. I.C. Engines by Maleev, CBS Pub.
- 5. 4. Combustion fundamentals by Roger A Strehlow

Course Outcomes**

At the end of the course student will be able to

- **CO1:** Compare and correlate between principles of engine operation, theoretical and actual cycle diagrams
- **CO2:** Correlate between different types of power plants and operational fuel air cycle and valve timing diagrams of CI and SI engines
- **CO3:** Analyse different phases of combustion and their significance in engine performance and study of combustion chambers
- **CO4:** Analyse the onset abnormal combustion and its impact on the engine performance and emissions

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes			Ρ	rog	ram	me	Out	con	nes	(POs))		Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	
CO1	2	1	1	-	-	-	1	-	-	-	-	1	1	-	-	-	
CO2	1	2	1	-	1	-	1	-	-	-	-	1	1	-	-	-	
CO3	2	1	1	-	1	-	1	-	-	-	-	1	1	-	-	-	
CO4	2	1	1	-	-	-	1	-	-	-	-	1	1	-	-	-	

21UME513E		Credits:	03
L:T:P - 2 : 2: 0	Non-Conventional Energy	CIE Marks:	: 50
Total Hours/Week: 4		SEE Marks	
•		1	
	UNIT-I		10 Hrs
disadvantages. Solar Radiation Extra-Terrestrial radiation, so	non-conventional energy sources, energy alter lar constant, beam, diffuse and global radiation ng ring pyrheliometer, sunshine recorder, principle o	5 Hours n, Measurement	-
	UNIT-II	/ Working.	10 Hrs
incidence, day length, simple p Solar Thermal Conversion	nal collection devices, liquid flat plate collectors,		
(cymarical, parabolic, paraboli	UNIT-III		10 Hrs.
associated with wind power, w vertical axis windmills. Fundamental characteristics of	v of wind energy in India, wind velocity and power vind machines; Types of wind machines and their ch f tidal power, harnessing tidal energy, limitations.	naracteristics, hor	-
Ocean Thermal Energy Convers	sion: Principle of working, problems associated with	OTEC	
	UNIT-IV		9 Hrs.
drum (constant pressure) type, Hydrogen energy: Production, Fuel cell: Principle of working.	biomass, Use of biogas in IC engines, advantages of , fixed dome (constant volume) type biogas plants, co delivery, transportation and safety Applications. iency, applications, advantages, and disadvantages.	-	on, floating
 Solar energy Subhas P Non-Conventional Energy Ramesh R & Kumar K L 	y Resources B H Khan McGraw Hill Education (India) Sukhatme Tata McGraw Hill 2nd Edition, 1996. rgy Sources G.D Rai Khanna Publishers 2003. J, Renewable Energy Technologies, Narosa Publishin It Technology, Mc Graw Hill Book Co, New Delhi, 200 al Energy Sources. Rai.	g House, New Del	
Course Outcomes			
	(number of sunshine hours) depending on the day of	f the	
CO2: Use the sunshine recorde	ind longitude. Illustrate radiation types. er, pyranometer and pyrheliometer for measurement ustrate solar thermal devices. Describe solar radiatio		

and diffuse radiations. Illustrate solar thermal devices. Describe solar radiation geometry.

5 – 8 Sem Syllabus as per NEP_ Mechanical Engineering _BE_ Dated: 05.05.2023

CO3: Solve the problems on wind energy e.g. the power produced by wind mill considering the air temperature, pressure of air and wind speed. Illustrate different wind mills, tidal plants and OTEC plants

CO4: Illustrate biogas plants, fuel cells and their uses, hydrogen energy and uses of PV cells

Course Outcomes		Programme Outcomes (POs)										Program Specific Outcomes (PSOs)					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	
CO1	2	1	1	-	-	-	-	1	-	1	-	-	2	1	1	-	
CO2	1	-	1	-	2	-	-	1	-	1	-	-	1	2	1	-	
CO3	2	1	1	I	-	I	-	1	-	1	I	-	2	1	1	-	
CO4	2	1	1	-	-	-	-	1	-	1	-	-	2	1	1	-	

21UME 521 N	OPERATIONS RESEARCH	03 - Credits
L:T:P - 3 : 0 : 0	(Open Elective)	CIE Marks : 50
Total Hours/Week: 03		SEE Marks : 50

	Unit - I	10 Hrs
Definit	DUCTION ion, scope of Operations Research (OR) approach and limitations of OR Models, bases of OR	Characteristics
09 Ho	R PROGRAMMING PROBLEMS Jrs Linear programming, graphical m d, Two-phase method, duality theory, dual simplex method.	ethod, simplex
	UNIT - II	10 Hrs
Mathe Metho ASSIG	PORTATION PROBLEMS matical model for Transportation problem, balanced and unbalanced transporta ds to solve transportation problem, finding basic feasible solution, testing solution f NMENT PROBLEMS lation, unbalanced assignment problem, travelling salesman problem	•
FOITIN	Unit - III	10 Hrs
seque	ace 2 jobs n machines with passing. Graphical solutions priority rules	vithout passing
PERT-(Projec	nce. 2 jobs n machines with passing. Graphical solutions priority rules. CPM TECHNIQUES: t network construction, Critical Path Method (CPM), determination of critical tion and Review Technique (PERT), probability of completing a project in a schedule	path, Project
PERT-(Projec	CPM TECHNIQUES:	path, Project
PERT-O Projec Evalua GAME Laws o point, REPLA Introd change	CPM TECHNIQUES: t network construction, Critical Path Method (CPM), determination of critical tion and Review Technique (PERT), probability of completing a project in a schedule Unit - IV of Probability, Formulation of games, two people-Zero sum game, games with and Graphical solution (2x n, m x 2 game), and dominance property. CEMENT MODELS uction, replacement of items whose maintenance and repair costs increase with es in the value of money during the period, replacement of items whose main	path, Project d date. 10 Hrs THEORY without saddle time, ignoring ntenance costs
PERT-(Projec Evalua GAME Laws c point, REPLA Introd change increas group	CPM TECHNIQUES: t network construction, Critical Path Method (CPM), determination of critical tion and Review Technique (PERT), probability of completing a project in a schedule Unit - IV of Probability, Formulation of games, two people-Zero sum game, games with and Graphical solution (2x n, m x 2 game), and dominance property. CEMENT MODELS uction, replacement of items whose maintenance and repair costs increase with tes in the value of money during the period, replacement of items whose maintenance se with time and value of money also changes with time, replacement of items that replacement policy.	path, Project d date. 10 Hrs THEORY without saddle time, ignoring ntenance costs
PERT-(Projec Evalua GAME Laws c point, REPLA Introd change increas group	CPM TECHNIQUES: t network construction, Critical Path Method (CPM), determination of critical tion and Review Technique (PERT), probability of completing a project in a schedule Unit - IV of Probability, Formulation of games, two people-Zero sum game, games with and Graphical solution (2x n, m x 2 game), and dominance property. CEMENT MODELS uction, replacement of items whose maintenance and repair costs increase with es in the value of money during the period, replacement of items whose main se with time and value of money also changes with time, replacement of items that replacement policy. ENCE BOOKS:	path, Project d date. 10 Hrs THEORY without saddle time, ignoring ntenance costs it fail suddenly,

Course Outcomes**

Course Outcomes: At the ed of the course, the student will be able to:

- **CO1:** Identify and appropriately formulate Linear Programming models for service and manufacturing systems from the verbal description of the real system, and apply operations research techniques and algorithms to solve these LP problems.
- **CO2:** Identify and understand the mathematical models and apply operations research techniques and algorithms to solve optimization problems like assignment, transportation, travelling salesman etc.
- **CO3:** Appropriately formulate Network and sequencing models for service and manufacturing systems, and apply operations research techniques and algorithms to analyse these problems.
- **CO4:** Enlighten to understand Multi-criteria decision techniques for the conflicts situation management and decision making under uncertainty and risk for the replacement of varied items.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes		Programme Outcomes (POs)											Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	
CO1	3	1	1	-	2	1	-	-	1	-	1	-	2	-	1	1	
CO2	2	1	-	-	1	1	-	-	1	-	1	-	2	-	1	1	
CO3	2	1	1	-	2	1	-	-	1	-	2	-	2	-	1	1	
CO4	1	1	1	-	1	1	-	-	1	-	-	1	2	-	1	1	

21UME 522 N	Product Design & Rapid Prototyping	03 - Credits
L:T:P - 3 : 0: 0	(Open elective)	CIE Marks : 50
Total Hours/Week: 03		SEE Marks : 100

Unit - I	10 Hrs
Introduction : Definition , importance of PD, Objectives of PD,essential requirements o product, Project team, steps in new PD, Characteristics of successful product developm cost of product development , challenges of product development, Design remanufacturing , sequential and concurrent engineering .	nent, duration and
Design for manufacture & assembly: Design for Manufacture and Assembly, History, I Design for Assembly, Design for Manufacture, How Does DFMA Work, Advantages during Product Design design for Maintainability, Design for Environment Design for Illumination design	of Applying DFMA
UNIT - II	10 Hrs
Development processes and organizations :A generic development process,Usefulness Development Process, task & responsibilities for marketing, design and manuface development: the front end process, adopting the generic product development pro- diagram for variant of products, product development organizations (functional, project &	cturing , concept cess, process flow
Unit - III	10 Hrs
compression in product development, RP fundamentals, RP wheel, history of RP syster RP, growth of RP industry, basic principle of rapid prototyping processes, classificatio advantages and disadvantages of rapid prototyping Stereolithogrphy systems: principle, process details, advantages and disadvantages, appl	n of RP systems .
Unit - IV	10 Hrs
Selective Laser sintering: principle, process details, advantages and disadvantages, applic	ations
Fused deposition modeling: principle, , process details , advantages and disadvantages, a	oplications
Laminated object manufacturing: principle, process details, LOM materials advantages a applications	and disadvantages,
Solid Ground curing: principle of operation , machine details, advantages and disadvantag	ges, applications
Reference books:	
	Hill
Reference books: 1. Karl T Ulrich and Steven D Eppinger,2020, Product design & development, McGraw	Hill
 Reference books: Karl T Ulrich and Steven D Eppinger,2020, Product design & development, McGraw C K Chua, K F Leong and C S Lim,2010 Rapid Prototyping principles and application Course Outcomes: At the end of the course the student should be able to: CO1: Use basics of product design as a means to manage the development of an idea from production 	Hill Is, book world
 Reference books: Karl T Ulrich and Steven D Eppinger,2020, Product design & development, McGraw C K Chua, K F Leong and C S Lim,2010 Rapid Prototyping principles and application Course Outcomes: At the end of the course the student should be able to: CO1: Use basics of product design as a means to manage the development of an idea from 	Hill Is, book world

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course			Ρ	rogi	am	me	Out	con	Program Specific Outcomes (PSOs)							
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	2	1	-	-	1	1	-	-	-	-	-	2	2	1	2
CO2	2	3	1	-	-	1	1	-	-	-	-	-	2	3	1	1
CO3	3	1	2	1	-	1	-	-	-	-	-	-	2	1	2	1
CO4	2	2	2	2	-	1	1	-	-	-	-	-	3	1	1	1

BASAVESHWAR ENGINEERING COLLEGE, BAGALKOTE- 587 102

Academic Year: 2023-24

VIth Semester B.E. (Mechanical Engineering)

Scheme of teaching and examination for B.E. I to VIII semesters (160 credits NEP) commencing from 2023 – 24 academic year (2021-22) admitted regular batch and Diploma Lateral Entry 2022-23 Batch).

SI.						Hours	/Week	I	Examinati	on Marks
No.	Category	Subject Code	Subject	Credits	Lecture	Tutorial	Practical	CIE	SEE	Total
1.	BSC	XXXX XXX X	Maths Course involving Problem solving relevant to the concerned branch/program	3.0	3	-	-	50	50	100
2.	РСС	21UME 601 C	Mechanical Vibrations	3.0	2	2	-	50	50	100
3.	РСС	21UME 602 C	Finite Element Methods	3.0	2	2	-	50	50	100
4.	РСС	21UME 603 C	Heat Transfer	3.0	2	2	-	50	50	100
5.	РСС	21UME 604 L	Heat and Mass Transfer Lab	1.0	-	-	2	50	50	100
6	РСС	21UME 605 L	Dynamics Lab	1.0	-	-	2	50	50	100
7.	PEC	21UME XXX E	Elective - II	3.0	3	-	-	50	50	100
8.	OEC	XXXX XXX X	Open Elective - II	3.0	3	-	-	50	50	100
9.	HSSM	21XXX XXX X	Environmental Studies	1.0	1	-	-	50	50	100
10.	AEC	XXXX XXX X	Soft Skill 3	1.0	1	-	-	50	50	100
11.	MP	21UME 606 P	Mini Project	2.0	-	-	4	50	50	100
			Total	20				550	550	1100

OEC: Open Elective – II is offered by other departments to Mechanical Engineering Students

MP: Mini Project

	EC: Elective – II any one elective from the following table	Open Elective – I Offered by Mechanical Engineering Department to Other Departmen Students				
Subject Code	Subject Code	Subject Code	Subject			
21UME 611 E	Non Destructive Testing	21UME621N	Engineering Economics			
21UME 612 E	Advanced Manufacturing Technology	21UME622N	Statistical Quality Control			
21UME 613 E	Operation Management					

21UME 601 C		03 - Credits		
L:T:P - 2 : 2: 0	MECHANICAL VIBRATIONS	CIE Marks : 50		
Total Hours/Week: 04		SEE Marks : 50		

UNIT – I	10 Hrs						
Introduction: Types of vibrations, Simple Harmonic Motion (S.H.M), principle of super applied to Simple Harmonic Motions. Beat's phenomena.	er position						
UNDAMPED FREE VIBRATIONS: Single degree of freedom systems. Undamped free vibrati free vibration, stiffness of spring elements, effect of mass of spring, Compound Pendulum, frequency using Newton's law and energy method.							
UNIT – II	10 Hrs						
DAMPED FREE VIBRATIONS: Single degree freedom systems, different types of damping, of and its importance, study of response of viscous damped systems for cases of under damping, Logarithmic decrement.	ing, critical a						
FORCED VIBRATION: Single degree freedom systems, steady state solution with viscous da force. Reciprocating and rotating unbalance, vibration isolation transmissibility ratio due to support motion.							
UNIT - III	10 Hrs						
 VIBRATION MEASURING INSTRUMENTS & WHIRLING OF SHAFTS: Vibrometer meter and accelerometer. Whirling of shafts with and without air damping. Discussion of speeds above and below critical speeds. SYSTEMS WITH TWO DEGREES OF FREEDOM: Introduction, principle modes and Normal modes of vibration, co-ordinate coupling, generalized and principal co-ordinates,. Applications: a) Vehicle suspension. b) Dynamic vibration absorber. 							
UNIT IV	10 Hrs						
 NUMERICAL METHODS FOR MULTI DEGREE FREEDOM SYSTEMS: Introduction, Influence coefficients, Maxwell reciprocal theorem, Reyleigh's method, Dunkerley's equation. Stodol Method of matrix iteration - Method of determination of the fundamental natural frequen Holzer's method. Introduction to Noise, Vibration, Harshness (NVH) and control: Subjective response of sou dependent human response; the decibel scale; relationship between, sound pressure level and sound intensity scale; auditory effects of noise; hazardous noise. 	cy,. und: Frequer						
Reference Books:							
 Mechanical Vibrations: G. K. Grover,7th edition Neam chand and Bros, Roorkee India Mechanical Vibrations: V.P. Singh, Dhanpat Rai & Company Pvt. Ltd., 3rd edition, 2003. Mechanical Vibrations, J.B.K Das, Sapna Book House - Bangalore Edition 2008 Mechanical Vibrations, S.S. Rao, Pearson Education Inc.4th Edition, 2003. Mechanical Vibrations, S. Graham Kelly, S. Graham Kelly, Schaum's Outline Series, Ta McGraw Hill Special Indian edition, 2007. Elements of Vibrations Analysis, Leonanrd Meirovitch, Tata McGraw Hill Special India 2007. 	06. ata						

Course Outcomes**:

By the end of course with aid of design data handbook students shall be able to,

- **CO1:** Understand the fundamentals, causes and the need of mechanical vibrations and mathematical models for undammed single degree of freedom systems.
- **CO2:** Analyze the mechanical model of damped free and forced vibratory system and formulating mathematical models for different damping systems.
- **CO3:** Analyze and discus on different vibration measuring instruments. Ability to understand and formulate mathematical models for two degree of freedom systems of theoretical and real life engineering systems.
- **CO4:** Analyze and formulate mathematical models for several degree of freedom systems using different numerical techniques. Able to understand causes and effects of Noise, Vibration, Harshness (NVH) and control.

Question paper pattern for SEE:

- 1. Total of eight questions with two from each unit to be set uniformly covering the entire syllabus.
- 2. Each question carries 20 Marks and should not have more than 4 subdivisions
- 3. Any five full questions are to be answered choosing at least one from each unit.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes		Programme Outcomes (POs)										Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	3	2	1	-	1	1	-	1	-	-	1	3	2	-	-
CO2	3	3	2	1	-	1	1	-	1	-	-	1	3	2	-	-
CO3	3	3	2	1	-	1	1	-	1	-	-	1	3	2	-	-
CO4	3	3	2	1	-	1	2	-	1	-	-	2	3	2	2	2

21UME 602 C		03 - Credits	
L:T:P - 2 : 2: 0	FINITE ELEMENT METHODS	CIE Marks : 50	
Total Hours/Week: 04		SEE Marks : 50	

UNIT – I	12 Hrs						
Introduction: Equilibrium equations in elasticity subjected to body force, traction f strain relations for plane stress and plane strain, Boundary conditions, Initial Euler's Lagrange's equations of bar, beams, Principle of a minimum potential ener of virtual work, Rayleigh-Ritz method Galerkins method and Matrix techniques.	l conditions,						
Basic Procedure: General description of Finite Element Method, , Discretization prof elements 1D, 2D and 3D elements, size of the elements, location of nodes, node scheme, half Bandwidth, Stiffness matrix of bar element by direct method, P stiffness matrix, Preprocessing, post processing. Engineering applications of fin method. Advantages & Disadvantages of FEM.	e numbering Properties of						
UNIT – II	08 Hrs						
Interpolation Models: Polynomial form of interpolation functions- linear, quadratic and cubic, Simplex, Complex, Multiplex elements, Selection of the order of the interpolation polynomial, Convergence requirements, , static condensation. penalty approach and elimination method. one dimensional bar element: Recall of 1D linear bar element. Lagrangian interpolation,							
Higher order one dimensional elements- quadratic, Cubic element and their shap properties of shape functions, Effect of temperature on 1D elements and stress cal							
UNIT – III	10 Hrs						
TWO dimensional elements: Shape functions and stiffness matrix of 2D element quadrilateral, Nine-Node quadrilateral Eight-Node quadrilateral, serendipity a comparison with 2D pascals triangle. CST and LST shape functions ,jacobian matrix, force terms, stress calculation and Numerical integration. Introduction to 3 shape function of tetrahedron element	nd lagrange rix , stiffness						
UNIT – IV	12 Hrs						
 TRUSSES AND BEAM ELEMENTS: Analysis of trusses and beam elements its shap stiffnesmatrix and stress calculation Heat Transfer Problems: Steady state heat transfer, 1D heat conduction governing boundary conditions, One dimensional element, Functional approach for heat Galerkin approach for heat conduction, heat flux boundary condition, 1D heat transfers 	ng equation, conduction,						
DESIGN DATA HAND BOOKS:							
 Design Data Hand Book – K. Lingaiah, McGraw Hill, 2nd Ed. 2003. Design Data Hand Book – K. Mahadevan and Balaveera Reddy, CBS Publicati Machine Design Data Hand Book – H.G. Patil, Shri Shashi Prakashan, Belgaur PSG Design Data Handbook PSG College of Technology, Coimbatore. 							

Reference Books:								
1.	The FEM its basics and fundamentals: O.C.Zienkiewicz, Elsevier, 6e.							
2.	Finite Element Method, J.N.Reddy, McGraw –Hill International Edition.							
3.	3. Finite Element Methods, by Daryl. L. Logon, Thomson Learning 3rd edition, 2001.							
4.	4. Finite Element Analysis, by H.V. Lalshminarayana, universities press, 2004.							
Course Outcomes:								
CO1: (Generate the governing FE equations for engineering problems /Mechanical systems.							
CO2: A	apply FEM to solve bars subjected to static load and thermal load							
CO3: A	apply the concept of lagrange interpolation for 2D and 3D elements and solve problems.							
CO4: A	apply FEM to solve trusses and beam problems							
Quest	ion paper pattern for SEE:							
1.	Total of eight questions with two from each unit to be set uniformly covering the							
	entire syllabus.							
2.	Each question carries 20 Marks and should not have more than 4 subdivisions							
3.	Any five full questions are to be answered choosing at least one from each unit.							

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes		Programme Outcomes (POs)										Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	1	1	1	1	-	-	-	-	-	-	-	-	1	-	-	-
CO2	2	1	2	1	3	-	-	-	-	-	-	-	1	-	-	-
CO3	2	1	2	1	3	-	-	I	-	-	-	-	1	-	-	-
CO4	2	1	2	1	3	-	-	-	-	-	-	-	1	-	-	-

21UME603C		03 - Credits		
L:T:P - 2 _L : 2 _T : 0 _P	HEAT TRANSFER	CIE Marks : 50		
Total Hours/Week: 04		SEE Marks : 100		

Unit - I	10 Hrs
----------	--------

INTRODUCTION:

Modes of heat transfer, Basic laws governing conduction, convection, and radiation heat transfer, Combined heat transfer mechanism, Overall heat transfer coefficient, Boundary conditions of 1st, 2nd and 3rd Kind. Mathematical formulation of heat conduction problems.

CONDUCTION:

Derivation of general three-dimensional heat conduction equation in Cartesian coordinate system, Special cases, 3-D conduction equation in cylindrical and spherical coordinate systems (No derivation).

ONE DIMENSIONAL CONDUCTION:

Derivation for heat flow and temperature distribution in a plane wall, Hollow cylinder and hollow sphere without heat generation, Thermal resistance concept & its importance. Composite wall, cylinder and sphere, Contact resistance, Critical thickness of insulation without heat generation, Heat transfer in extended surfaces of uniform cross-section without heat generation, Long fin, Tip insulated fin and fin with heat transfer from the tip, Fin efficiency and effectiveness, Numerical problems on above topics.

ONE-DIMENSIONAL TRANSIENT CONDUCTION:

Conduction in solids with negligible internal temperature gradient (Lumped system analysis), Use of Transient temperature charts (Heisler's charts) for slab, long cylinder and sphere, Numerical Problems

CONCEPTS AND BASIC RELATIONS IN BOUNDARY LAYERS:

Flow over a body, Velocity and thermal boundary layer, Critical Reynolds number, General expressions for drag coefficient and drag force, General expression for local heat transfer coefficient, Average heat transfer coefficient, Nusselt number, Flow inside a duct- velocity boundary layer, Hydrodynamic entrance length and hydro dynamically developed flow, Numerical problems based on empirical relations given in the data handbook.

FREE OR NATURAL CONVECTION:

Application of dimensional analysis for free convection, Physical significance of Grashoff number, Use of correlations of free convection for vertical, horizontal and inclined flat plates, Vertical and horizontal cylinders and spheres, Numerical problemsbased on empirical relations given in the data handbook.

10 Hrs

Unit - III

FORCED	CONVECTION:	

Application of dimensional analysis for forced convection, Physical significance of Reynolds, Prandtl, Nusselt and Stanton numbers, Use of various correlations for hydro dynamically and thermally developed flow inside a duct, Use of correlations for flow over a flat plate, cylinder and sphere. Numerical problemsbased on empirical relations given in the data handbook.

HEAT EXCHANGERS:

Classification of heat exchangers, Overall heat transfer coefficient, Fouling and fouling factor, LMTD analysis of heat exchangers, Effectiveness-NTU methods of analysis of heat exchangers. Numerical problemsbased on empirical relations given in the data handbook.

U	n	it	-	I۱	/
---	---	----	---	----	---

RADIATION HEAT TRANSFER:

Thermal radiation, Definitions of various terms used in radiation heat transfer, Stefan-Boltzmann law, Kirchhoff's law, Planck's law and Wien's displacement law. Radiation heat exchange between two parallel infinite black surfaces, Configuration factor or view factor, Intensity of radiation and solid angle; Lambert's law, Radiation heat exchange between two parallel infinite gray surfaces, Effect of radiation shield (only discussion on nonblack surfaces), Numerical problems based on empirical relations given in the data handbook.

CONDENSATION AND BOILING:

Types of condensation (discussion only), Nusselt theory for laminar condensation on a vertical flat surface (no derivation), Use of correlations for condensation on vertical flat surfaces, Horizontal tube and horizontal tube banks, Reynolds number for condensate flow, Regimes of pool boiling, Pool boiling correlations, Numerical problemsbased on empirical relations given in the data handbook.

Reference books:

- 1. Heat Transfer A Basic approach by M. Necati Ozisik Tata Mc Graw Hill International ed. 1998
- 2. Heat Transfer by Tirumaleshwar, Pearson education, 2006
- 3. Heat Transfer A Practical approach by Yunus A. Cenegal Tata Mc Graw Hill 2002
- 4. Principles of Heat Transfer by Kreith Thomson learning 2001
- 5. Fundamentals of Heat and Mass transfer By Frank P. Incropera and David P. Dewitt Johm Wiley and Sons 4th ed. 1995
- 6. Heat transfer, P.K. Nag, Tata Mc Graw Hill 2002

Course Outcomes:

At the end of the course student will be able to

- **CO1:** Understand and correctly use the heat transfer terminology and governing laws. Formulate the steady and unsteady state unidirectional conduction heat transfer to analyze the conditions..
- **CO2:** Understand the boundary layer concepts as applied to fluid flow fundamentals and analyze heat transfer as applied to convection heat transfer..
- **CO3:** Analyze and design the heat exchanger equipment based on the need that fit to application.
- **CO4:** Analyze the radiation heat transfer, radiation heat exchange between gray body surfaces and design the heat transfer systems like radiation shields etc.
- CO5: Understand and evaluate the heat transfer rate in the phase change process

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes (POs)											Program Specific Outcomes (PSOs)					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	3	2	1	-	2	-	-	-	-	-	2	3	2	2	1
CO2	3	3	2	1	-	1	-	-	-	-	-	2	3	2	2	1
CO3	3	2	2	1	-	1	-	-	-	-	-	2	3	2	2	1
CO4	3	3	2	1	-	1	1	-	-	-	-	2	3	2	2	1
CO5	3	2	2	1	-	1	1	-	-	-	-	2	3	2	2	1

21UME 604 L		01 - Credits
L: T: P: 0: 0: 2	HEAT & MASS TRANSFER LABORATORY LAB	CIE Marks : 50
Total Hours/Week: 02	LADURATURT LAB	SEE Marks : 50

Part – A	10 Hrs
1. Determination of Thermal Conductivity of a Metal Rod.	
2. Determination of Overall Heat Transfer Coefficient of a Composite wall.	
3. Determination of Effectiveness on a Metallic fin.	
4. Determination of Heat Transfer Coefficient in a free Convection on a vertical tube.	
5. Determination of Heat Transfer Coefficient in a Forced Convention Flow through a Pipe.	
6. Determination of Emissivity of a Surface.	
PART - B	10 Hrs
Group experiments	
Determination of Stefan Boltzman Constant.	
Determination of LMDT and Effectiveness in a Parallel Flow and Counter Flow Heat Exchan	gers
Experiments on Boiling of Liquid and Condensation of Vapour	
Performance Test on a Vapour Compression Refrigeration.	
Performance Test on a Vapour Compression Air – Conditioner	
Experiment on Transient Conduction Heat Transfer	
Course Outcomes:	
CO1: To be able to Define, understand, apply and analyze conduction heat transfer princip	oles
CO2: To be able to Define, understand and analyze transient heat 7 transfer principles	
CO3: To be able to Define, understand and analyze forced and free convection heat transference principles	er
CO4: To be able to Define, understand and analyze the heat radiation, phase change heat and mass transfer principles	transfer
Scheme for Examination:	
One Question from Part A 15 Marks (OF M/ritoun 10)	
One Question from Part A - 15 Marks (05 Writeup+10) One Question from Part B - 25 Marks (05 Writeup+20)	
Viva-Voce - 10 Marks	
Total 50 Marks	

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course				Pro	Program Specific Outcomes (PSOs)											
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	2	-	-	1	-	-	-	-	-	1	1	3	2	-	-
CO2	3	2	-	-	1	-	-	-	-	-	1	1	3	2	-	-
CO3	1	1	-	-	1	-	-	-	-	-	1	1	1	1	-	-
CO4	1	1	-	-	1	-	-	-	-	-	1	1	1	1	-	-

21UME 605 L		01 - Credits
L: T: P: 0: 0: 2	DYNAMICS LABORATORY	CIE Marks : 50
Total Hours/Week: 02		SEE Marks : 50

	Part – A	10 Hrs
1.	Determination of natural frequency, logarithmic decrement, damping ratio an coefficient in a. single degree of freedom vibrating systems (longitudinal and torsional)	d dampin
2		
2.	Balancing of rotating masses.	
3. 4.	Determination of critical speed of a rotating shaft. Determination of Fringe constant of Photo elastic material using.	
	Circular disc subjected to diametric compression.	
6.	Pure bending specimen (four point bending)	
7.		onents like
	plate with a hole under tension or bending, circular disk with circular h compression.	
	PART - B	10 Hrs
	Group experiments	
1.	Determination of equilibrium speed, sensitiveness, power and effort of Por	ter/Prowe
	/Hartnel Governor. (Only one or more)	
2.	Determination of Pressure distribution in Journal bearing.	
3.	Determination of Principal Stresses and strains in a member subjected to combin	ed loadin
	using Strain rosettes.	
4.	Determination of natural frequency of compound pendulum.	
5.	Experiments on Gyroscope	
	Outcomes:	
	udents are able to understand Degree of freedom and distinguish longitudinal vibra prsional Vibration.	tion and
	udents realize the importance of damping	
	udents will be observe the working of gyroscopic principal	
	udents will observe the various fringe pattern from photo elastic material and calcu	late fringe
	instant.	
scheme	e for Examination:	
One Qu	estion from Part A - 15 Marks (05 Writeup+10)	
	estion from Part B - 25 Marks (05 Writeup+20)	
/iva-Vo	ce - 10 Marks	

Total 50 Marks

Course Outcomes			Р	rog	ram	me	Program Specific Outcomes (PSOs)									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	1	1	2	1	2	1	1	2	-	-	-	2	2	1	2
CO2	2	3	1	2	-	1	1	-	-	-	-	-	2	2	1	1
CO3	3	1	2	1	-	1	-	-	-	-	-	-	3	1	3	1
CO4	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

21UME611C								
L:T:P - 3 : 0: 0								
Total Hours/Week: 03								

UNIT – I	10 Hrs								
Introduction to ND Testing: Information gathered from NDT, Defects in manufacturing A and disadvantages of NDT, Comparison of destructive & Non-destructive tests, Method Common application of NDT, Flaw detection & evaluation, leak detection & evaluation Destructive Evaluation, visual inspection Replication microscopy technique for Non Destructive Evaluation: Specimen preparation,	ds of NDT, ation, Non								
techniques, and micro structural analysis									
UNIT – II	10 Hrs								
Liquid Penetrant Inspection: Principles, penetrant methods, procedure, materials used, e parameters and applications Magnetic Particle Inspection: Principle, general procedure, a & limitations, applications, magnetic field generation, types of magnetic particles and s liquids, Direction of the Magnetic Field, Importance of Magnetic Field Direction	advantages								
	40.11								
UNIT - III	10 Hrs								
Radiography Inspection: principle, X-ray radiography, equipment, Gamma-ray radiography, real time radiography & film radiography, radiation safety ,advantages, disadvantages and applications of radiography Computed tomography: Principles, capabilities, comparison to other NDE methods, CT equipments, industrial computed tomography applications									
UNIT IV 10 Hrs									
Ultrasonic inspection: Basic equipment, advantages & limitations, inspection methods pull B, C scans transmission transducers & couplants Thermal Inspection: Principles, e inspection methods applications Eddy Current Inspection: Principles of operation, advantages & limitations, operating variables, inspection coils, eddy current instruments, a examples	equipment, procedure,								
 Reference Books: 1. NON DESTRUCTIVE EVALUTION AND QUALITY CONTROL, METALS HAND BOOK, A SOCIETY OF METALS, 9TH, EDITION 2001 2. NON DESTRUCTIVE –GARDEN AND REACH, MC GONNAGLE JJ NEWYORK 	AMERICAN								
Course Outcomes:									
 By the end of course with aid of design data handbook students shall be able to, CO1: To have a basic knowledge of surface N D E techniques which enable to carry out various inspection in accordance with the established procedures. CO2: Differentiate various defect types and select the appropriate N D T methods for better evaluation CO3: Documentation of the testing and evaluation of the results for further analysis CO4: Students will be able to understand significance and suitability of various non destructive testing methods in industrial application. 									

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes			Р	rog	ram	me	Program Specific Outcomes (PSOs)									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1																
CO2																
CO3																
CO4																

21UME 612 E		03 - Credits
L: T: P:- 3 : 0 : 0	ADVANCED MANUFACTURING TECHNOLOGY	CIE Marks : 50
Hrs./Week : 03	TECHNOLOGY	SEE Marks : 50

UNIT – I	10 Hrs
Introduction: Introduction to CAD/CAM, product system facilities: Low, medium	-
Manufacturing support systems, Automation in production systems. Automated man systems. Computerized manufacturing systems. Reasons for automating, Automation pri	-
systems. Computenzed manufacturing systems. Reasons for automating, Automation pri-	ncipies and
Fundamentals of Automated Production Lines: Introduction, System configurations,	, Workpart
transfer mechanisms, Storage buffers, Control of the production line.	·
UNIT – II	10 Hrs
Analysis of Transfer Lines: Analysis of Transfer Lines with no internal storage: Basic termi	nology and
Performance measures, Workstation breakdown analysis: Upper bound approach, Lo	wer bound
approach, and Analysis of Transfer Lines with storage buffers. Numerical examples.	
Automated Assembly System: Introduction, System configurations, Parts delivery at we	
Applications. Quantitative analysis: Parts delivery system, Multi-station and single statio machines. Partial automation.	II asseriibiy
UNIT - III	10 Hrs
NC Part Programming: Basic components of an NC system, EIA and ISO coding standard	
	us, ne part
programming exercises.	
Computer Assisted Part Programming: Defining part geometry, Specifying tool path and	doperation
sequence, Computer task in computer-assisted part programming, Part programming	-
exercises.	2 WILLI APT
	g with APT
UNIT IV	10 Hrs
	10 Hrs
UNIT IV	10 Hrs
UNIT IV Product life cycle management: Introduction, Product information, PLM framework	10 Hrs , Benefits, anagement:
UNIT IV Product life cycle management: Introduction, Product information, PLM framework Implementation, Enabling technologies, Example of business problem. Product data ma Evolution of PDM systems, Scope, Benefits, Implementation, Software capabilities functions	10 Hrs K, Benefits, anagement: K, software
UNIT IV Product life cycle management: Introduction, Product information, PLM framework Implementation, Enabling technologies, Example of business problem. Product data ma Evolution of PDM systems, Scope, Benefits, Implementation, Software capabilities functions Advances in Automated Factory: Industry 4.0: functions, applications and benefits, Com	10 Hrs , Benefits, anagement: , software aponents of
UNIT IV Product life cycle management: Introduction, Product information, PLM framework Implementation, Enabling technologies, Example of business problem. Product data ma Evolution of PDM systems, Scope, Benefits, Implementation, Software capabilities functions Advances in Automated Factory: Industry 4.0: functions, applications and benefits, Com Industry 4.0, Internet of things (IoT), IoT applications in manufacturing, Big-Data and cloud	10 Hrs , Benefits, anagement: , software aponents of
UNIT IV Product life cycle management: Introduction, Product information, PLM framework Implementation, Enabling technologies, Example of business problem. Product data ma Evolution of PDM systems, Scope, Benefits, Implementation, Software capabilities functions Advances in Automated Factory: Industry 4.0: functions, applications and benefits, Com Industry 4.0, Internet of things (IoT), IoT applications in manufacturing, Big-Data and cloud for IoT, IoT for smart manufacturing	10 Hrs , Benefits, anagement: , software aponents of
UNIT IV Product life cycle management: Introduction, Product information, PLM framework Implementation, Enabling technologies, Example of business problem. Product data ma Evolution of PDM systems, Scope, Benefits, Implementation, Software capabilities functions Advances in Automated Factory: Industry 4.0: functions, applications and benefits, Com Industry 4.0, Internet of things (IoT), IoT applications in manufacturing, Big-Data and cloud for IoT, IoT for smart manufacturing Reference Books:	10 Hrs K, Benefits, anagement: S, software aponents of computing
UNIT IV Product life cycle management: Introduction, Product information, PLM framework Implementation, Enabling technologies, Example of business problem. Product data ma Evolution of PDM systems, Scope, Benefits, Implementation, Software capabilities functions Advances in Automated Factory: Industry 4.0: functions, applications and benefits, Com Industry 4.0, Internet of things (IoT), IoT applications in manufacturing, Big-Data and cloud for IoT, IoT for smart manufacturing Reference Books: 1. Groover M. P., Automation, Production Systems and CIM, Prentice Hall of India, 20	10 Hrs K, Benefits, anagement: S, software aponents of computing
UNIT IVProduct life cycle management: Introduction, Product information, PLM frameworkImplementation, Enabling technologies, Example of business problem. Product data maEvolution of PDM systems, Scope, Benefits, Implementation, Software capabilitiesfunctionsAdvances in Automated Factory: Industry 4.0: functions, applications and benefits, ComIndustry 4.0, Internet of things (IoT), IoT applications in manufacturing, Big-Data and cloudfor IoT, IoT for smart manufacturingReference Books:1. Groover M. P., Automation, Production Systems and CIM, Prentice Hall of India, 202. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill, 2008.	10 Hrs K, Benefits, anagement: S, software aponents of computing
UNIT IV Product life cycle management: Introduction, Product information, PLM framework Implementation, Enabling technologies, Example of business problem. Product data ma Evolution of PDM systems, Scope, Benefits, Implementation, Software capabilities functions Advances in Automated Factory: Industry 4.0: functions, applications and benefits, Com Industry 4.0, Internet of things (IoT), IoT applications in manufacturing, Big-Data and cloud for IoT, IoT for smart manufacturing Reference Books: 1. Groover M. P., Automation, Production Systems and CIM, Prentice Hall of India, 20 2. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill, 2008. 3. P. N. Rao, CAD/CAM Principles and Applications, 2nd Edition	10 Hrs k, Benefits, anagement: b, software aponents of computing 008.
UNIT IV Product life cycle management: Introduction, Product information, PLM framework Implementation, Enabling technologies, Example of business problem. Product data mate Evolution of PDM systems, Scope, Benefits, Implementation, Software capabilities functions Advances in Automated Factory: Industry 4.0: functions, applications and benefits, Com Industry 4.0, Internet of things (IoT), IoT applications in manufacturing, Big-Data and cloud for IoT, IoT for smart manufacturing Reference Books: 1. Groover M. P., Automation, Production Systems and CIM, Prentice Hall of India, 20 2. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill, 2008. 3. P. N. Rao, CAD/CAM Principles and Applications, 2nd Edition 4. Computer Integrated Manufacturing, Bharat Vijamuri, Sunstar Publisher, 4th Edition	10 Hrs k, Benefits, anagement: b, software aponents of computing 008.
UNIT IV Product life cycle management: Introduction, Product information, PLM framework Implementation, Enabling technologies, Example of business problem. Product data ma Evolution of PDM systems, Scope, Benefits, Implementation, Software capabilities functions Advances in Automated Factory: Industry 4.0: functions, applications and benefits, Com Industry 4.0, Internet of things (IoT), IoT applications in manufacturing, Big-Data and cloud for IoT, IoT for smart manufacturing Reference Books: 1. Groover M. P., Automation, Production Systems and CIM, Prentice Hall of India, 20 2. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill, 2008. 3. P. N. Rao, CAD/CAM Principles and Applications, 2nd Edition 4. Computer Integrated Manufacturing, Bharat Vijamuri, Sunstar Publisher, 4th Edition Course Outcomes**:	10 Hrs k, Benefits, anagement: b, software aponents of computing 008.
UNIT IV Product life cycle management: Introduction, Product information, PLM framework Implementation, Enabling technologies, Example of business problem. Product data ma Evolution of PDM systems, Scope, Benefits, Implementation, Software capabilities functions Advances in Automated Factory: Industry 4.0: functions, applications and benefits, Com Industry 4.0, Internet of things (IoT), IoT applications in manufacturing, Big-Data and cloud for IoT, IoT for smart manufacturing Reference Books: 1. Groover M. P., Automation, Production Systems and CIM, Prentice Hall of India, 20 2. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill, 2008. 3. P. N. Rao, CAD/CAM Principles and Applications, 2nd Edition 4. Computer Integrated Manufacturing, Bharat Vijamuri, Sunstar Publisher, 4th Editic Course Outcomes**: At the end of the course student will be able to	10 Hrs <, Benefits, anagement: , software aponents of computing 008. on, 2018.
UNIT IV Product life cycle management: Introduction, Product information, PLM framework Implementation, Enabling technologies, Example of business problem. Product data ma Evolution of PDM systems, Scope, Benefits, Implementation, Software capabilities functions Advances in Automated Factory: Industry 4.0: functions, applications and benefits, Com Industry 4.0, Internet of things (IoT), IoT applications in manufacturing, Big-Data and cloud for IoT, IoT for smart manufacturing Reference Books: 1. Groover M. P., Automation, Production Systems and CIM, Prentice Hall of India, 20 2. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill, 2008. 3. P. N. Rao, CAD/CAM Principles and Applications, 2nd Edition 4. Computer Integrated Manufacturing, Bharat Vijamuri, Sunstar Publisher, 4th Editic Course Outcomes**: At the end of the course student will be able to CO1: Read and demonstrate good comprehension fstudy of two aspects of provide the study of two aspects of provements of provements and computer study of two aspects of provide the study of	10 Hrs x, Benefits, anagement: x, software aponents of computing 008. 008. 008. 008.
UNIT IV Product life cycle management: Introduction, Product information, PLM framework Implementation, Enabling technologies, Example of business problem. Product data ma Evolution of PDM systems, Scope, Benefits, Implementation, Software capabilities functions Advances in Automated Factory: Industry 4.0: functions, applications and benefits, Com Industry 4.0, Internet of things (IoT), IoT applications in manufacturing, Big-Data and cloud for IoT, IoT for smart manufacturing Reference Books: 1. Groover M. P., Automation, Production Systems and CIM, Prentice Hall of India, 20 2. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill, 2008. 3. P. N. Rao, CAD/CAM Principles and Applications, 2nd Edition 4. Computer Integrated Manufacturing, Bharat Vijamuri, Sunstar Publisher, 4th Editice Course Outcomes**: At the end of the course student will be able to C01: Read and demonstrate good comprehensionof study of two aspects of p systems and how they are sometimes automated and /or computerized in modern	10 Hrs x, Benefits, anagement: x, software aponents of computing 008. 008. 008. 008.
UNIT IV Product life cycle management: Introduction, Product information, PLM framework Implementation, Enabling technologies, Example of business problem. Product data ma Evolution of PDM systems, Scope, Benefits, Implementation, Software capabilities functions Advances in Automated Factory: Industry 4.0: functions, applications and benefits, Com Industry 4.0, Internet of things (IoT), IoT applications in manufacturing, Big-Data and cloud for IoT, IoT for smart manufacturing Reference Books: 1. Groover M. P., Automation, Production Systems and CIM, Prentice Hall of India, 20 2. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill, 2008. 3. P. N. Rao, CAD/CAM Principles and Applications, 2nd Edition 4. Computer Integrated Manufacturing, Bharat Vijamuri, Sunstar Publisher, 4th Editic Course Outcomes**: At the end of the course student will be able to CO1: Read and demonstrate good comprehension fstudy of two aspects of provide the study of two aspects of provements of provements and computer study of two aspects of provide the study of	10 Hrs k, Benefits, anagement: b, software aponents of computing 008. 008. 008. 008. 008. 008.

and develop several mathematical models that can be used to analyze their operation **CO3**: Evaluate, integrate, and apply programmable automation in which the mechanical actions of the machine tool or other equipment are controlled by a program containing coded alphanumeric data.

CO4: Properly understand PLM; why it is crucial for companies to implement, what a PLM system offers, what PDM is and its relationship to PLM and study the functions and components, applications and benefits of Industry 4.0, Concept of IoT.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes			Ρ	rog	ram	me	Out	con	nes	(POs))		Program Specific Outcomes (PSOs)					
	1	2 3 4 5 6 7 8 9 10 11 12							12	1	2	3	4					
CO1	2	2	1	-	-	-	2	1	2	2	1	2	2	2	1	-		
CO2	2	2	2	-	-	-	2	1	2	2	1	2	2	2	2	-		
CO3	2	2	1	-	-	-	2	1	2	2	1	2	1	1	2	-		
CO4	2	2	2	-	-	-	2	1	2	2	1	2	2	2	1	-		
		High -3, Medium – 2, Low - 1																

21UME 613 E		03 - Credits
L:T:P - 3 : 0: 0	OPERATION MANAGEMENT	CIE Marks : 50
Total Hours/Week: 3		SEE Marks : 50

UNIT – I	10 Hrs										
Introduction: Functional subsystems of organization, System concept of production production system, Productivity, strategic management, World class manufacturing.	, Types of										
Product Design and Analysis: New product development concepts, Process planning a Value analysis/Value engineering, Make or buy decision, Ergonomic consideration in produ											
UNIT – II	12 Hrs										
Forecasting: Nature and use of forecasting, Sources of data, Demand patterns, Factors affecting forecast, types of forecasting, Forecasting Models – Linear Regression, Simple moving average, weighted moving average, e, Single exponential smoothing, Double exponential smoothing, Adjusted exponential smoothing and Delphi method.											
Facility Location: Introduction, factors influencing plant location, break even analysis, sin location problem, Minimax location problem and gravity location problem.	ngle facility										
UNIT - III	10 Hrs										
 Plant Layout and Materials Handling: Introduction, Classification of layout, Layout procedures – Computerized Relative Allocation of Facilities Technique (CRAFT), Automa Design Program (ALDEP) and, Computerized Relationship Layout Planning (CORELAP). Line Balancing: Concept of mass production system, objective of assembly line balance bal	ited Layout										
positional weight method and the COMSOL Algorithm. UNIT IV	14 Hrs										
Modern Production Management Tools: Just-In-Time manufacturing – introduction and JIT, basic principles, push/pull production, kanban systems (pull systems). Total Quality M – scope of TQM, benefits of TQM, quality control activities during product cycle, operations. Kaizen – Key elements of kaizen, classification of kaizen, steps of implementation Blitz, guidelines of kaizen team, benefits of kaizen. Lean Manufacturing – step manufacturing, components of lean manufacturing.	anagement ting quality n of kaizen										
Reference books:											
 Production and Operations Management, R. Panneerselvam. Prentice Hall of India Pvt Analysis and Control of Production Systems, 2nd Edition, Elsayed A. Elsayed, Thomas Operation, 1994 Production and Operations Management, R. B. Khanna, PHI, 2010. Modern Production/Operations Management, Buffa, Wiley Eastern Ltd.2001 Operations Management, Joseph G MonksMc Hill 1987. 											
 Analysis and Control of Production Systems, 2nd Edition, Elsayed A. Elsayed, Thomas O Pearson, 1994 Production and Operations Management, R. B. Khanna, PHI, 2010. Modern Production/Operations Management, Buffa, Wiley Eastern Ltd.2001 Operations Management, Joseph G MonksMc 	O. Boucher,										

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes		Programme Outcomes (POs) Program Spe Outcomes (F								-						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	1	2	-	-	-	-	-	1	1	-	1	1	-	-	-
CO2	2	1	-	1	-	-	-	-	1	1	-	1	-	-	-	-
CO3	1	1	2	1	-	-	-	-	1	1	-	1	1	-	-	-
CO4	1	1	2	I	-	-	-	-	1	1	-	1	1	-	-	-

21UME621 N
L:T:P 3:0:0
Total Hours/Week : 03

UNIT – I	10 Hrs									
Introduction: Engineering and Economics, Definition, Engineering Decision-Makers, Problem solving and Decision making, Law of demand and supply, Law of returns, Interest and Interest factors: Interest rate, Simple interest, Compound interest, Cash - flow diagrams, Exercises and Discussion. Present Worth Comparisons: Conditions for present worth comparisons, Basic Present worth comparisons, Present worth equivalence, Net Present worth, Assets with unequal lives, infinite lives, Future worth comparison, Pay-back comparison, Exercises and Discussion.										
UNIT – II	10 Hrs									
 Equivalent Annual worth Comparisons: Equivalent Annual Worth Comparison methods, for Equivalent Annual Worth Comparisons, Consideration of asset life, Comparison of equal and unequal lives, Use of shrinking fund method, Annuity contract for guarante Exercises and Discussion. Rate of Return Calculations: Rate of return, Minimum acceptable rate of return misconceptions, Exercises and Discussion. 	assets with ed income,									
UNIT - III	10 Hrs									
Depreciation: Causes of Depreciation, Basic methods of computing depreciation charges. Estimating and Costing: Components of costs such as Direct Material Costs, Direct Labor Over-Heads, Factory cost, Administrative Over-Heads, First cost, Marginal cost, Se Estimation for simple components.	-									
UNIT IV	10 Hrs									
financial information, financial statements, Balance sheet, Profit and Loss account, relation Balance sheet and Profit and Loss account. Financial Ratio Analysis: Introduction, Nature of ratio analysis, Liquidity ratios, Leven Activity ratios, Profitability ratios, Evaluation of a firm's earning power. Comparative analysis.	rage ratios,									
Reference Books:										
 James L. Riggs, David D. Bedworth, Sabah U. Randhawa, Thirteenth representation of the provided and the provided	n, McGraw h edition use.									
Course Outcomes: After completion of the course students shall be able to CO1: Apply time value of money concepts to enhance decision-making processes.										

CO2: Evaluate the economic worth of alternatives based on present worth / annual equivalent-worth / rate-of return.

CO3: Determine by adopting accounting principles depreciation charges / estimation and cost **CO4:** Interpret data sets and prepare accounting & financial statements in accordance with accounting principles and regulations. Also **Analyze** various financial ratios and draw conclusions.

Course Outcomes				Pro	gran	nme	Outo	ome	s (Po	os)			Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	
CO1	1	2	-	1		-	-	-	-	1	2	-	1	-	-	1	
CO2	1	2	-	2	1	-	-	-	-	-	3	-	1	-		1	
CO3	1	2	-	-	-	-	-	1	-		2	-	1	-	1	1	
CO4	1	1	-	-	1	-	-	-	-	-	2	-	1	-	1	1	

21UME622N		03 - Credits
L:T:P - 3 : 0: 0	Statistical Quality Control	CIE Marks : 50
Total Hours/Week: 03		SEE Marks : 100

Unit - I	10 Hrs
INTRODUCTION : The meaning of quality and quality improvement, Quality of design, factors controlling quality of conformance, factors controlling quality of conformance, Quality of perform function,Quality control, Aims of quality control, Quality characteristicsCost of quality S for quality control Benefits of statistical quality control Variables and attributes MODELING PROCESS QUALITY : The concept of variation Gathering of data, Tabular summarization of data Classificati Objects of classification The frequency distribution Diagrammatic and graphic preserve representation of frequency distribution (Histogram, frequency polygon, bar chart, ogive of central values(averages) Types of averages (Mean, median and mode) Measures of destandard deviation variance)	mance, The quality statistical methods on and tabulation entation Graphical e curve) Measures
UNIT - II	10 Hrs
CONTROL CHARTS: Introduction to control charts Chance and assignable causes of variation Types of control charts Control charts for variables Control chart for average and range ($\overline{x} R$) Control chart for a standard deviation ($\overline{x} \sigma$) Process capability Numerical problems	average and
Unit - III	10 Hrs
 Construction and use of p np c and u charts Numerical problems Control Chart for Fraction Nonconforming — p chart Control Chart for Nonconforming — np chart Control Chart for Nonconformities — c chart Control Chart for Nonconformities per unit — u chart 	
Unit - IV	10 Hrs
ACCEPTANCE SAMPLING : Lot by lot acceptance sampling for attributes The acceptance sampling problem disadvantages of sampling plans single sampling plan for attributes The OC curve I sampling plan Double sampling plan Multiple sampling plan Sequential sampling plan I sampling plan, LTPD plan AOQL curves Reference books:	Designing a single
1. Statistical quality control : RC Gupta , khanna Publishers New Delhi 2005 2.Statistical quality control : E. L.Grant and R.S.Leavenworth, 7 edition Mc Graw Hill 3.Statistical quality control : Mahajan	
Course Outcomes:	
 At the end of the course the student should be able to: CO1: Apply the philosophy and basic concepts of quality improvement CO2: Develop skills to analyse quality related data using advanced statistical methods CO3: Acquire knowledge on the traditional statistical quality control methods and develop techniques CO4: Perform analysis to design, use, and interpret control charts for attributes 	o charting

Course Outcomes		Programme Outcomes (POs)/ Programme Specific Outcomes (Pso)														
(COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
1	1	3	2	2	-	-	-	-	-	-	-	-	3	2	1	3
2	2	3	2	3	-	-	-	-	-	-	-	-	1	2	1	1
3	2	3	3	3	-	-	-	-	-	-	-	-	2	3	2	1
4	2	3	3	2	-	-	-	-	-	-	-	-	3	1	2	1

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOTE- 587 102

Academic Year : 2024-25

VIIth/VIIIth Semester B.E. (Mechanical Engineering)

Scheme of teaching and examination for B.E. I to VIII semesters (160 credits NEP) commencing from 2023 – 24 academic year (2021-22 admitted regular batch and Diploma Lateral Entry 2022-23 Batch).

SI.						Hours	/Week	I	Examinati	on Marks
No.	Category	Subject Code	Subject	Credits	Lecture	Tutorial	Practical	CIE	SEE	Total
1.	PEC	21UME7XXE	Elective-III	3.0	3	-	-	50	50	100
2.	PEC	21UME7XXE	Elective-IV	3.0	3	-	-	50	50	100
3.	OEC	21UME7XXN	Open Elective-III	3.0	3	-	-	50	50	100
4.	Project	21UME7XXP	Project Work	8.0				50	50	100
5.	AEC	21UME7XXL	CAE/CNC Lab	1.0	-	-	2	50	50	100
			Total	18				250	250	500

OR

SI.					Hours/Week		Examination Marks			
No.	Category	Subject Code	Subject	Credits	Lecture	Tutorial	Practical	CIE	SEE	Total
1.	AEC	21UME8XXE	Data Science for Mechanical Engineers	2.0	2	-	-	50	50	100
2.	AEC		MOOCs	3.0	-	-	-			
3.	Seminar	21UME8XXS	Technical Seminar	1.0	-	-	-	100		100
4.	INT	21UME8XXI	Research/Industrial Internship	10.00	-	-	-	150	50	200
		16				300	100	400		

	PEC: Elective – III	PEC: Elective – IV								
Subject Code	Subject	Subject Code	Subject							
21UME711E	Theory of Elasticity	21UME811E	Advanced Metal Joining Processes							
21UME712E	Product Design & Rapid Prototyping	21UME812E	Control Engineering							
21UME713E	UME713E Information Technology Approaches in Manufacturing		Supply Chain Management							
21UME714E	Hydraulics And Pneumatics	21UME814E	Tool Design							
21UME715E	Composite Materials	21UME815E	Power Plant Engineering							
	Open Elective									
Subject Code	Subject	Subject Code	Subject							
21UME821N	Fluid Power Automation	21UME822N	Advanced manufacturing Technology							

21UME 711 E		03 – Credits
L: T: P – 3: 0: 0	THEORY OF ELASTICITY	CIE Marks : 50
Hrs./Week : 03		SEE Marks : 50

UNIT – I	10 Hrs										
DEFINITIONAND NOTATION: Stress, Stress at a Point, Equilibrium Equations, Principal St Diagram, Maximum Shear Stress, Boundary Conditions.	resses, Mohr's										
STRAIN AT A POINT: Compatibility Equations, Principal Strains, Generalized Hooke's law, N Solution of Elasticity Problems – Plane Stress-Plane Strain Problems.	Nethods of										
UNIT – II	10 Hrs										
TWO DIMENSIONAL PROBLEMS: Cartesian co-ordinates – Airy's stress functions – Investig Stress function for simple beam problems – Bending of a narrow cantilever beam of rec section under edge load – method of Fourier analysis – pin ended beam under uniform pre	ctangular cross										
GENERAL EQUATIONS IN CYLINDRICAL CO-ORDINATE: Thick cylinder under uniform internal and / or external pressure, shrink and force fit, stress											
UNIT - III	10 Hrs										
STRESSES IN AN INFINITE PLATE: Stress in infinite plate with a circular hole subjected t biaxial loads, stress concentration, stresses in rotating discs and cylinders. TORSION OF CIRCULAR, ELLIPTICAL AND TRIANGULAR BARS: Torsion of circular, elliptical bars, membrane analogy, torsion of thin open sections and thin tubes.											
UNIT IV	10 Hrs										
in thin circular discs.	ermal stresses										
 in thin circular discs. UNIQUENESS THEOREM: Principle of super position, reciprocal theorem, Saint Venant print Reference Books: Applied Elasticity-C.T. Wang-Tata Mc. Graw Hill-1953 Theory of Elasticity -Sadhu Singh-Khanna Publishers-1997. Elasticity in Engineering Mechanics, , -A. P. Boresi and K. P. Chong- John Wil Edition, 2000. Advanced Strength and Applied ElasticityA. C. Ugural and S. K. Fenster-Elsevie 1987 Theory of elasticity -T.G.Sitaram-Springer-2021 Advanced Mechanics of solids -L. S. Srinath-Tata Mc. Graw Hill-2003 Theory of Elasticity-S. P. Timoshenko and J. N Goodier-Tata Mc. Graw Hill-2006 	nciple. ley &Sons-2nd er-2nd Edition,										
 in thin circular discs. UNIQUENESS THEOREM: Principle of super position, reciprocal theorem, Saint Venant print Reference Books: Applied Elasticity-C.T. Wang-Tata Mc. Graw Hill-1953 Theory of Elasticity -Sadhu Singh-Khanna Publishers-1997. Elasticity in Engineering Mechanics, , -A. P. Boresi and K. P. Chong- John Will Edition, 2000. Advanced Strength and Applied ElasticityA. C. Ugural and S. K. Fenster-Elsevie 1987 Theory of elasticity -T.G.Sitaram-Springer-2021 Advanced Mechanics of solids -L. S. Srinath-Tata Mc. Graw Hill-2003 	nciple. ley &Sons-2nd er-2nd Edition,										

Question paper pattern for SEE:

- 1. Total of eight questions with two from each unit to be set uniformly covering the entire syllabus.
- 2. Each question carries 20 Marks and should not have more than 4 subdivisions
- 3. Any five full questions are to be answered choosing at least one from each unit.

Course	Programme Outcomes (POs)												Program Specific Outcomes (PSOs)						
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4			
CO1	1	1	1	1	-	-	-	-	-	-	-	-	1	-	-	_			
CO2	2	1	2	1	3	-	-	-	-	-	-	-	1	-	-	_			
CO3	2	1	2	1	3	-	-	-	-	-	-	-	1	-	-	-			
CO4	2	1	2	1	3	-	-	-	-	-	-	-	1	-	-	-			

Product Design & Rapid Prototyping	

03 - Credits CIE Marks : 50 SEE Marks : 100

L:T:P - 3 : 0: 0 Total Hours/Week: 03

21UME712E

Unit - I	10 Hrs
Introduction : Definition , importance of PD, Objectives of PD, essential requirements o product, Project team, steps in new PD, Characteristics of successful product development cost of product development , challenges of product development, Design remanufacturing , sequential and concurrent engineering .	nent, duration and
Design for manufacture & assembly: Design for Manufacture and Assembly, History, Design for Assembly, Design for Manufacture, How Does DFMA Work, Advantages during Product Design design for Maintainability, Design for Environment Design for Illumination design	of Applying DFMA
UNIT - II	10 Hrs
Development processes and organizations :A generic development process,Usefulness Development Process, task & responsibilities for marketing, design and manufac development: the front end process, adopting the generic product development pro diagram for variant of products, product development organizations (functional, project 8	cturing , concept cess, process flow
Unit - III	10 Hrs
 RP, growth of RP industry, basic principle of rapid prototyping processes, classificatio advantages and disadvantages of rapid prototyping Stereolithogrphy systems: principle, process details , advantages and disadvantages, appl 	II UI NE SYSLEIIIS .
Unit - IV	ications 10 Hrs
Unit - IV	10 Hrs
	10 Hrs cations pplications
Unit - IV Selective Laser sintering: principle, process details , advantages and disadvantages, applic Fused deposition modeling: principle, , process details , advantages and disadvantages, a Laminated object manufacturing : principle, process details, LOM materials advantages a	10 Hrs cations pplications and disadvantages,
Unit - IV Selective Laser sintering: principle, process details , advantages and disadvantages, applic Fused deposition modeling: principle, , process details , advantages and disadvantages, applications	10 Hrs cations pplications and disadvantages,
Unit - IV Selective Laser sintering: principle, process details , advantages and disadvantages, applic Fused deposition modeling: principle, , process details , advantages and disadvantages, a Laminated object manufacturing : principle, process details, LOM materials advantages a applications Solid Ground curing: principle of operation , machine details, advantages and disadvantage	10 Hrs cations pplications and disadvantages,
Unit - IV Selective Laser sintering: principle, process details, advantages and disadvantages, applic Fused deposition modeling: principle, process details, advantages and disadvantages, applications Laminated object manufacturing : principle, process details, LOM materials advantages applications Solid Ground curing: principle of operation , machine details, advantages and disadvantage Text-Books: 1. Product design & development by Karl T Ulrich and Steven D Eppinger 2. Rapid Prototyping principles and applications by C K Chua, K F Leong and C S Lim Reference Books:	10 Hrs cations pplications and disadvantages,
Unit - IV Selective Laser sintering: principle, process details, advantages and disadvantages, applic Fused deposition modeling: principle, process details, advantages and disadvantages, application Laminated object manufacturing : principle, process details, LOM materials advantages applications Solid Ground curing: principle of operation , machine details, advantages and disadvantage Text-Books: 1. Product design & development by Karl T Ulrich and Steven D Eppinger 2. Rapid Prototyping principles and applications by C K Chua, K F Leong and C S Lim	10 Hrs cations pplications and disadvantages, ges, applications

Course Outcomes:

At the end of the course the student should be able to:

- **CO1:** Learning basics of product design as a means to manage the development of an idea from concept through to production
- **CO2:** Analyse ,evaluate and apply the generic method for product development
- **CO3:** Learning basics of prototyping

CO4: Demonstrate Stereolithogrphy , selective laser sintering , fused deposition modeling , laminated object manufacturing & solid ground curing

Scheme of Examination:

Student has to solve PART-A compulsorily and from PART-B any ONE full question from each of the four UNITS.

Course Outcomes	Programme Outcomes (POs)												Programme Specific Outcomes (Pso)				
(COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
1	3	2	1	-	-	1	1	-	-	-	-	-	2	2	1	2	
2	2	3	1	-	-	1	1	-	-	-	-	-	2	3	1	1	
3	3	1	2	1	-	1	-	-	-	-	-	-	2	1	2	1	
4	2	2	2	2	-	1	1	-	-	-	-	-	3	1	1	1	

21UME713 E L:T:P - 3L : 0T: 0P Total Hours/Week: 03

UNIT – I	10 Hrs										
Information Technology and the Increasing Complexity of Manufacturing: Introduction Technology for Manufacturing- Definition and Elements, Flexibility for the future Information Technology's Increasing Capability in a Changing World, New Manufacturing St	, Recognizing										
IT Systems: Computer Hardware- Fundamentals, Classification of Computers, Design Principles of Networking, Private Computer Communication Networks, (VPN, PSDN,ISt Topologies, Transmission Media, Intranet, Internet.											
UNIT – II	10 Hrs										
Introduction to CIM Database: Database requirements of Manufacturing, Database, Features of Database Management System, Database Models-Hierarchical, Network and Relational, DBMS architecture, Query Language. SQL as a knowledge base query language.											
Product Data Exchange: Introduction, Types of Translators, IGES, STEP, ACIS and DXF, Processors, Case Study on STEP.											
UNIT - III	10 Hrs										
 Concurrent Engineering: Introduction, Implementation of concurrent engineering, Concurrent engineering and Information Technology, Soft and Hard prototyping, Characteristics of Concurrent Engineering, Key factors influencing the success of CE, Examples of CE. Collaborative Design: Introduction, Distributed Computing, Intranets and Extranets, Instant Messaging, Virtual Reality Modeling Language, Traditional Design, Collaborative Design, Collaborative 											
Principles,Collaborative approaches, Collaboration Tools, Collaborative Design Systems.	10 Hrs										
Planning of Resources for Manufacturing through Information Systems: Introduction, Ro a CIM system, Manufacturing Applications, Engineering Applications, Dynamic Enterprise Selection of an ERP package, ERP in India, Dynamic Enterprise Modelling (DEM). IoT: IoT Overview, IoT Hardware, Iot Software, IoT Technology and Protocols, IoT Comm Manufacturing Applications, Energy applications.	es, ERP, SCM,										
Reference Books:											
 Reference Books: Radhakrishnan, Subramanyan, V. Raju, "CAD/CAM/CIM", NewAge International Publishers, Third Edition. Mikell P. Groover, "Automation, Production Systems, and Computer-Integrated Manufacturing", Prentice-Hall of India Pvt. Ltd. Second Edition. Ibrahim Zeid, "Mastering CAD/CAM", Tata McGraw-Hill Publishing Company Ltd. www.tutorialpoint.com , "Internet of Things", Tutorials Point, Simply easy learning. https://www.nap.edu/read/4815/chapter/1 											
Course Outcomes:											
After completion of the course, the students CO1: Understand and identify the manufacturing sector with the application of I Technology theory and tools. Learn the IT system ingredients to understar specifications, and applications. CO2: Understand the method of transforming the design and manufacturing info	nd concepts,										

into data, identify the classification and application of different data management methods. Gain knowledge of Query language and knowledge of handling manufacturing data using different types of file systems.

- **CO3:** Study the role of Information Technology in manufacturing sequences comprising of various production activities. Apply the concepts of concurrent engineering, collaborative design in manufacturing network
- **CO4:** Apply the concept of the ERP in manufacturing, understand the concept of IoT and its applications

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course				Prog	grami	me O	utcor	nes (POs)				Program Specific Outcomes (PSOs)						
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4			
CO1	1	2	2	1	2	1	2	2	3	2	1	1	2	2	1	2			
CO2	2	2	1	1	1	1	2	1	2	1	2	2	1	3	3	2			
CO3	2	1	2	1	1	3		1	2	2	1	2	2	2	2	1			
CO4	2	2	2	3	1	1	2		2	1	1	2	3	3	3	3			

21UME 714 E		03 - Credits
L:T:P – 3: 0: 0	HYDRAULICS AND PNEUMATICS	CIE Marks : 50
Total Hours		SEE Marks : 50

UNIT – I	10 Hrs
Introduction to Fluid Power:	
Pascal's law, Applications of Pascal's law with problems using hand opera	ated hydraul
jack and air to hydraulic pressure booster, Structure of hydraulic system	
Source of Hydraulic Power:	
Pumping theory, pump classification and difference between positive displacement a	and non-positi
displacement pumps, working of external gear pump and variable displacement var	
piston pump, Problems on pump flow rate, efficiency and torque.	
UNIT – II	10 11
	10 Hrs
Hydraulic Actuators and Motors:	+ 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Linear Hydraulic Actuators [cylinders], Problems on pressure, HP and pist	
Rotary gear motor and variable displacement vane motor and axial piston motor. Proble	erns on enticien
power, speed, displacement and torque of the motor.	
Control Components in Hydraulic Systems:	
Directional Control Valves – Symbolic representation, Constructional features, pres	sure relief val
flow control valve and check valve, valve actuation symbols.	Sure relier var
UNIT - III	10 Hrs
	10 113
Hydraulic Circuit Design and Analysis:	10 113
Hydraulic Circuit Design and Analysis: Control of single and Double – acting Hydraulic cylinder, regenerative circuit,	
	drilling machi
Control of single and Double – acting Hydraulic cylinder, regenerative circuit,	drilling machi
Control of single and Double – acting Hydraulic cylinder, regenerative circuit, application, Metre-in and Metre-out circuits, pump unloading circuit and double	drilling machi
Control of single and Double – acting Hydraulic cylinder, regenerative circuit, application, Metre-in and Metre-out circuits, pump unloading circuit and double	drilling machi
Control of single and Double – acting Hydraulic cylinder, regenerative circuit, application, Metre-in and Metre-out circuits, pump unloading circuit and double system, Hydraulic Braking and Antilock Braking System (ABS) of an Automobile. Pneumatic Controls: Structure of pneumatic system, Pneumatic Actuators: Linear cylinders and Rod less	drilling machi pump hydrau
Control of single and Double – acting Hydraulic cylinder, regenerative circuit, application, Metre-in and Metre-out circuits, pump unloading circuit and double system, Hydraulic Braking and Antilock Braking System (ABS) of an Automobile. Pneumatic Controls:	drilling machi pump hydrau
Control of single and Double – acting Hydraulic cylinder, regenerative circuit, application, Metre-in and Metre-out circuits, pump unloading circuit and double system, Hydraulic Braking and Antilock Braking System (ABS) of an Automobile. Pneumatic Controls: Structure of pneumatic system, Pneumatic Actuators: Linear cylinders and Rod less	drilling machi pump hydrau
Control of single and Double – acting Hydraulic cylinder, regenerative circuit, application, Metre-in and Metre-out circuits, pump unloading circuit and double system, Hydraulic Braking and Antilock Braking System (ABS) of an Automobile. Pneumatic Controls: Structure of pneumatic system, Pneumatic Actuators: Linear cylinders and Rod less working, advantages and disadvantages. Rotary external gear motor Directional and Flow Control valves of pneumatics:	drilling machi pump hydrau cylinders –type
Control of single and Double – acting Hydraulic cylinder, regenerative circuit, application, Metre-in and Metre-out circuits, pump unloading circuit and double system, Hydraulic Braking and Antilock Braking System (ABS) of an Automobile. Pneumatic Controls: Structure of pneumatic system, Pneumatic Actuators: Linear cylinders and Rod less working, advantages and disadvantages. Rotary external gear motor Directional and Flow Control valves of pneumatics: Poppet valves, spool valve, rotary valve, pilot operated valve, pilot operated check	drilling machi pump hydrau cylinders –type
Control of single and Double – acting Hydraulic cylinder, regenerative circuit, application, Metre-in and Metre-out circuits, pump unloading circuit and double system, Hydraulic Braking and Antilock Braking System (ABS) of an Automobile. Pneumatic Controls: Structure of pneumatic system, Pneumatic Actuators: Linear cylinders and Rod less working, advantages and disadvantages. Rotary external gear motor Directional and Flow Control valves of pneumatics: Poppet valves, spool valve, rotary valve, pilot operated valve, pilot operated check control valve	drilling machi pump hydrau cylinders –type
Control of single and Double – acting Hydraulic cylinder, regenerative circuit, application, Metre-in and Metre-out circuits, pump unloading circuit and double system, Hydraulic Braking and Antilock Braking System (ABS) of an Automobile. Pneumatic Controls: Structure of pneumatic system, Pneumatic Actuators: Linear cylinders and Rod less working, advantages and disadvantages. Rotary external gear motor Directional and Flow Control valves of pneumatics: Poppet valves, spool valve, rotary valve, pilot operated valve, pilot operated check control valve UNIT IV	drilling machi pump hydrau cylinders –type
Control of single and Double – acting Hydraulic cylinder, regenerative circuit, application, Metre-in and Metre-out circuits, pump unloading circuit and double system, Hydraulic Braking and Antilock Braking System (ABS) of an Automobile. Pneumatic Controls: Structure of pneumatic system, Pneumatic Actuators: Linear cylinders and Rod less working, advantages and disadvantages. Rotary external gear motor Directional and Flow Control valves of pneumatics: Poppet valves, spool valve, rotary valve, pilot operated valve, pilot operated check control valve UNIT IV Pneumatic Circuit Design:	drilling machi pump hydrau cylinders –type c valve, and flo
Control of single and Double – acting Hydraulic cylinder, regenerative circuit, application, Metre-in and Metre-out circuits, pump unloading circuit and double system, Hydraulic Braking and Antilock Braking System (ABS) of an Automobile. Pneumatic Controls: Structure of pneumatic system, Pneumatic Actuators: Linear cylinders and Rod less working, advantages and disadvantages. Rotary external gear motor Directional and Flow Control valves of pneumatics: Poppet valves, spool valve, rotary valve, pilot operated valve, pilot operated check control valve UNIT IV Pneumatic Circuit Design: Direct and indirect actuation pneumatic cylinders. Flow control valves, speed	drilling machi pump hydrau cylinders –type c valve, and flo 10 Hrs ed control c
Control of single and Double – acting Hydraulic cylinder, regenerative circuit, application, Metre-in and Metre-out circuits, pump unloading circuit and double system, Hydraulic Braking and Antilock Braking System (ABS) of an Automobile. Pneumatic Controls: Structure of pneumatic system, Pneumatic Actuators: Linear cylinders and Rod less working, advantages and disadvantages. Rotary external gear motor Directional and Flow Control valves of pneumatics: Poppet valves, spool valve, rotary valve, pilot operated valve, pilot operated check control valve UNIT IV Pneumatic Circuit Design: Direct and indirect actuation pneumatic cylinders. Flow control valves, spee cylinders, supply air throttling and exhaust air throttling, quick exhaust valve and sh	drilling machi pump hydrau cylinders –type cylinders and flo 10 Hrs ed control conuttle valve
Control of single and Double – acting Hydraulic cylinder, regenerative circuit, application, Metre-in and Metre-out circuits, pump unloading circuit and double system, Hydraulic Braking and Antilock Braking System (ABS) of an Automobile. Pneumatic Controls: Structure of pneumatic system, Pneumatic Actuators: Linear cylinders and Rod less working, advantages and disadvantages. Rotary external gear motor Directional and Flow Control valves of pneumatics: Poppet valves, spool valve, rotary valve, pilot operated valve, pilot operated check control valve UNIT IV Pneumatic Circuit Design: Direct and indirect actuation pneumatic cylinders. Flow control valves, spee cylinders, supply air throttling and exhaust air throttling, quick exhaust valve and sh Use of Logic gates - OR and AND gates in pneumatic applications. Practical Example	drilling machi pump hydrau cylinders –type cylinders and flo 10 Hrs ed control conuttle valve
Control of single and Double – acting Hydraulic cylinder, regenerative circuit, application, Metre-in and Metre-out circuits, pump unloading circuit and double system, Hydraulic Braking and Antilock Braking System (ABS) of an Automobile. Pneumatic Controls: Structure of pneumatic system, Pneumatic Actuators: Linear cylinders and Rod less working, advantages and disadvantages. Rotary external gear motor Directional and Flow Control valves of pneumatics: Poppet valves, spool valve, rotary valve, pilot operated valve, pilot operated check control valve UNIT IV Pneumatic Circuit Design: Direct and indirect actuation pneumatic cylinders. Flow control valves, spee cylinders, supply air throttling and exhaust air throttling, quick exhaust valve and sh Use of Logic gates - OR and AND gates in pneumatic applications. Practical Example use of logic gates	drilling machi pump hydrau cylinders –type cylinders and flo 10 Hrs ed control conuttle valve
Control of single and Double – acting Hydraulic cylinder, regenerative circuit, application, Metre-in and Metre-out circuits, pump unloading circuit and double system, Hydraulic Braking and Antilock Braking System (ABS) of an Automobile. Pneumatic Controls: Structure of pneumatic system, Pneumatic Actuators: Linear cylinders and Rod less working, advantages and disadvantages. Rotary external gear motor Directional and Flow Control valves of pneumatics: Poppet valves, spool valve, rotary valve, pilot operated valve, pilot operated check control valve UNIT IV Pneumatic Circuit Design: Direct and indirect actuation pneumatic cylinders. Flow control valves, spee cylinders, supply air throttling and exhaust air throttling, quick exhaust valve and sh Use of Logic gates - OR and AND gates in pneumatic applications. Practical Example use of logic gates Multi- Cylinder Application:	drilling machi pump hydrau cylinders –type c valve, and flo 10 Hrs ed control conuttle valve es involving th
Control of single and Double – acting Hydraulic cylinder, regenerative circuit, application, Metre-in and Metre-out circuits, pump unloading circuit and double system, Hydraulic Braking and Antilock Braking System (ABS) of an Automobile. Pneumatic Controls: Structure of pneumatic system, Pneumatic Actuators: Linear cylinders and Rod less working, advantages and disadvantages. Rotary external gear motor Directional and Flow Control valves of pneumatics: Poppet valves, spool valve, rotary valve, pilot operated valve, pilot operated check control valve UNIT IV Pneumatic Circuit Design: Direct and indirect actuation pneumatic cylinders. Flow control valves, spee cylinders, supply air throttling and exhaust air throttling, quick exhaust valve and sh Use of Logic gates - OR and AND gates in pneumatic applications. Practical Example use of logic gates	drilling machi pump hydrau cylinders –type c valve, and flo 10 Hrs ed control conuttle valve es involving th

	1. Fluid Power with applications Anthony Esposito Pearson education 2000
	2. Hydraulics and Pneumatics Andrew Parr Jaico Publishing Co. 2000
	3. Industrial Hydraulics Pippenger Hicks McGraw Hill, New York. 2001
	4. Hydraulic Systems – Principles and Maintenance Tata S. R. Majumdar McGraw Hill publishing company Ltd. 2001
	5. Pneumatic systems S. R. Majumdar McGraw Hill publishing company Ltd.1995
Course	Outcomes:
op CO2: De giv CO3: In sc pr CO4: De	oply the concepts of Pascals law to determine the force required to lift the load using hand berated hydraulic jack, air to hydraulic pressure booster and hydraulic system. etermine the overall efficiency, flow rate, speed and torque of the pump and motor for the ven specifications of the pump and motor. Integrate control components into a hydraulic system using FluidSIM hydraulics simulation oftware teaching tool for meter-in, meter-out, drilling machine, regenerative circuit, double ump system, pump unloading circuits and ABS system applications. esign pneumatic systems for speed control, multi cylinder sequential control and logic gates oplications using FluidSIM pneumatics simulation software teaching tool

Course				Prog	grami	Program Specific Outcomes (PSOs)										
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	1	2	-	-	-	-	-	1	1	-	1	1	-	-	-
CO2	2	1	-	1	-	-	-	-	1	1	-	1	-	-	-	-
CO3	1	1	2	-	3	-	-	-	1	1	-	1	1	-	-	-
CO4	1	1	2	-	3	-	-	-	1	1	-	1	1	-	-	-

21UME 715 E		03 - Credits				
L: T: P: 2 : 2 : 0	COMPOSITE MATERIALS	CIE Marks : 50				
Hrs./Week : 03		SEE Marks : 50				

Introduction to composite metaviole.	10 Hrs
Introduction to composite materials: Definition and classification of composites based on matrix and reinforcement, Charac composite materials, Fibrous composites, Laminate composites and particulate composit which determine the properties of composites, Benefits of composites, properties an reinforcements and matrices, Reinforcement-matrix interface.	es. Factors
UNIT – II	10 Hrs
Polymer matrix composites: Introduction, Polymer matrices, Processing methods like Lay up and curing, open and close process- hand lay up techniques, laminate bag molding, production procedures for bag mo winding, pultrusion, pulforming, thermo-forming, molding methods, properties of PMCs ar Some commercial PMCs.	lding, filam
UNIT - III	10 Hrs
Metal matrix composites: Introduction, Metallic matrices, Classification of MMCs, Need for production of MMCs, Intereactions, processing methods like Powder metallurgy, diffusion bonding, Melt stirring, Concasting, Squeeze casting, Liquid melt infiltration, Spray deposition and In situ Processes, Prometal matrix composites, Applications, Some commercial MMCs.	mpo/Rheo
UNIT IV	10 Hrs
Continuous fibers, Iso-stress condition, Iso-strain condition, critical volume fraction of minimum volume fraction of fiber, Numericals on modulus of rigidity, and mech discontinuous fibers. Cutting and machining of composites: Reciprocating knife cutting, cutting of cured composicomposites: Mechanical fastening, Adhesive bonding. Reference Books:	nanics of
1. Composite Science and Engineering, K. K. Chawla, Springer Verlag, 1998	
2. Introduction to composite materials Hull and Clyne Cambridge University Press, 2nd E 1990	
 Composite Materials: Engineering and Science F. L. Mathew and R. D. Rawlings, Wood Publishing Limited, 1999 	lhead
4. Composite materials handbook, MeingSchwaitz, McGraw Hill Book Company, 1984	
 Composite materials nanabook, Mengoeriwale, Meeraw nin book company, 1994 Mechanics of Composite Materials, Robert M. Jones, McGraw Hill Kogakusha Ltd, 1996 Composite materials, S. C. Sharma, Narosa Publishing House, 2000 Mechanics of composites, Artar Kaw, CEC Press, 2002 	8
 Mechanics of Composite Materials, Robert M. Jones, McGraw Hill Kogakusha Ltd, 199 Composite materials, S. C. Sharma, Narosa Publishing House, 2000 	8

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course				Pro	ogra	mme	Program Specific Outcomes (PSOs)									
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	1	1	-	-	-	-	1		1	-	-	2	1	1	-
CO2	1	2	1	-	-	-	-	1		1	-	-	1	2	1	-
CO3	-	1	1	2		-	-	1		1	-	-	-	1	1	2
CO4	-	-	1	1	2	-	-	1		1	-	-	-	-	1	2

21UME812E		Credits: 03
L:T:P - 3 : 0: 0	CONTROL ENGINEERING	CIE Marks: 50
Total Hours/Week: 3		SEE Marks: 50
	UNIT – I	10 Hrs
INTRODUCTION:		5 Hours
•	, open and closed loop systems, concepts of feedb htrollers – Proportional, Integral, Proportional In	· · · ·
MATHEMATICAL MODELS: Transfer function, Mathematica	l Models of Mechanical systems, and Hydraulic syste	5 Hours ems.
	10 Hrs	
BLOCK DIAGRAMS AND SIGNAL	FLOW GRAPHS:	4 Hours
signal flow graphs: Mason's gair		
	E RESPONSE ANALYSIS: cond order system response to step, ramp and impuls speed of response. System stability: Routh's –Hurwit:	
		10 Hrs
	UNIT - III	
	SIS: elative stability concepts, phase and gain margin.	5Hours
Polar plots: Stability Analysis, Re	SIS: elative stability concepts, phase and gain margin. Ing Bode plots, Simplified Bode Diagrams.	
Polar plots: Stability Analysis, Re Bode Plots: stability analysis usi	SIS: elative stability concepts, phase and gain margin.	5Hours 5Hours 10 Hrs
Polar plots: Stability Analysis, Ro Bode Plots: stability analysis usi ROOT LOCUS PLOTS:	SIS: elative stability concepts, phase and gain margin. Ing Bode plots, Simplified Bode Diagrams.	5Hours 5Hours 10 Hrs 6 Hours
Polar plots: Stability Analysis, Ro Bode Plots: stability analysis usi ROOT LOCUS PLOTS: Definition of root loci, general ro CONTROL ACTION AND SYSTEM	SIS: elative stability concepts, phase and gain margin. ing Bode plots, Simplified Bode Diagrams. UNIT IV ules for constructing root loci, Analysis using root loc	5Hours 5Hours 10 Hrs 6 Hours
Polar plots: Stability Analysis, Ro Bode Plots: stability analysis usi ROOT LOCUS PLOTS: Definition of root loci, general ro CONTROL ACTION AND SYSTEM	SIS: elative stability concepts, phase and gain margin. Ing Bode plots, Simplified Bode Diagrams. UNIT IV ules for constructing root loci, Analysis using root loc I COMPENSATION:	5Hours 5Hours 10 Hrs 6 Hours cus.
Polar plots: Stability Analysis, Re Bode Plots: stability analysis usi ROOT LOCUS PLOTS: Definition of root loci, general re CONTROL ACTION AND SYSTEM Series and feedback compensat Reference Books: 1. Modern Control Engine 5 th edition, 2010.	SIS: elative stability concepts, phase and gain margin. ing Bode plots, Simplified Bode Diagrams. UNIT IV ules for constructing root loci, Analysis using root loc COMPENSATION: ion, Physical devices for system compensation. ering, Katsuhiko Ogata University of Minnesota.	5Hours 5Hours 5Hours 6 Hours cus. 4 Hours Prentice Hall, New Jersey,
Polar plots: Stability Analysis, Ro Bode Plots: stability analysis usi ROOT LOCUS PLOTS: Definition of root loci, general ro CONTROL ACTION AND SYSTEM Series and feedback compensat Reference Books: 1. Modern Control Engine 5 th edition, 2010. 2. Control systems Engine 2018	SIS: elative stability concepts, phase and gain margin. ing Bode plots, Simplified Bode Diagrams. UNIT IV ules for constructing root loci, Analysis using root loc COMPENSATION: ion, Physical devices for system compensation. ering, Katsuhiko Ogata University of Minnesota. eering, I.J. Nagrath and M. Gopal, New Age Intern	SHours 5Hours 5Hours 6 Hours cus. 4 Hours Prentice Hall, New Jersey, ational Publisher, 6 th edition,
Polar plots: Stability Analysis, Re Bode Plots: stability analysis usi ROOT LOCUS PLOTS: Definition of root loci, general re CONTROL ACTION AND SYSTEM Series and feedback compensat Reference Books: 1. Modern Control Engine 5 th edition, 2010. 2. Control systems Engine 2018 3. Control systems Engine 2011	SIS: elative stability concepts, phase and gain margin. ing Bode plots, Simplified Bode Diagrams. UNIT IV ules for constructing root loci, Analysis using root loc A COMPENSATION: ion, Physical devices for system compensation. ering, Katsuhiko Ogata University of Minnesota. eering, I.J. Nagrath and M. Gopal, New Age Intern eering, U.A. Bakshi and V.U.Bakshi, Technical Pu	5Hours 5Hours 5Hours 5Hours 5Hours 6 Hours cus. 4 Hours Prentice Hall, New Jersey, ational Publisher, 6 th edition, blications Pune, 3 rd edition
Polar plots: Stability Analysis, Re Bode Plots: stability analysis usi ROOT LOCUS PLOTS: Definition of root loci, general re CONTROL ACTION AND SYSTEM Series and feedback compensat Reference Books: 1. Modern Control Engine 5 th edition, 2010. 2. Control systems Engine 2018 3. Control systems Engine 2011 4. Solutions and Problems	SIS: elative stability concepts, phase and gain margin. ing Bode plots, Simplified Bode Diagrams. UNIT IV ules for constructing root loci, Analysis using root loc COMPENSATION: ion, Physical devices for system compensation. ering, Katsuhiko Ogata University of Minnesota. eering, I.J. Nagrath and M. Gopal, New Age Intern	5Hours 5Hours 5Hours 5Hours 5Hours 6 Hours cus. 4 Hours Prentice Hall, New Jersey, ational Publisher, 6 th edition, blications Pune, 3 rd edition
Polar plots: Stability Analysis, Re Bode Plots: stability analysis usi ROOT LOCUS PLOTS: Definition of root loci, general re CONTROL ACTION AND SYSTEM Series and feedback compensat Reference Books: 1. Modern Control Engine 5 th edition, 2010. 2. Control systems Engine 2018 3. Control systems Engine 2011	SIS: elative stability concepts, phase and gain margin. ing Bode plots, Simplified Bode Diagrams. UNIT IV ules for constructing root loci, Analysis using root loc COMPENSATION: ion, Physical devices for system compensation. ering, Katsuhiko Ogata University of Minnesota. eering, I.J. Nagrath and M. Gopal, New Age Intern eering, U.A. Bakshi and V.U.Bakshi, Technical Pu of Control Systems, Jairath, CBS Publications Delhi,	5Hours 5Hours 5Hours 5Hours 5Hours 6 Hours cus. 4 Hours Prentice Hall, New Jersey, ational Publisher, 6 th edition, blications Pune, 3 rd edition

CO3: Analyze the accuracy of the systems by using graphical methods(Polar plot and Bode plot) **CO4:** Analyze the accuracy of the systems by using root locus

Question paper pattern for SEE:

1Total of eight questions with two from each unit to be set uniformly covering the entire syllabus.

- 1. Each question carries 20 Marks and should not have more than 4 subdivisions
- 2. Any five full questions are to be answered choosing at least one from each unit.

Table: Matrix to describe the mapping of POs with Cos

Course		Programme Outcomes (POs)											Program Specific Outcomes (PSOs)						
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4			
CO1	2	3	2	-	1	-	-	1	-	-	-	1	2	2	-	-			
CO2	2	3	3	-	1	-	-	1	-	-	-	1	2	2	-	-			
CO3	3	3	3	-	1	-	-	1	-	-	-	1	2	2	-	-			
CO4	3	2	3	-	1	-	-	1	-	-	-	1	2	2	-	-			
							ŀ	ligh -:	3, Me	dium	– 2, L	.ow - 1							

21UME 813 E		03 - Credits (3 : 0 : 0)		
Hrs./Week : 03	SUPPLY CHAIN MANAGEMENT	CIE Marks : 50		
Total Hours : 40		SEE Marks : 50		

UNIT – I	10 Hrs									
Framework of Supply Chains: Introduction to supply chain, The objective of a supply chain, The importance of supply chain decisions, Decision phases in a supply chain, Process views of a supply chain: Cycle view of supply chain processes, Push/Pull view of supply chain processes, Examples (minimum two) of Supply Chains.										
Performance of Supply Chains: Competitive and supply chain strategies, Achieving strategic fit: Understanding the customer and supply chain uncertainty, Understanding the supply chain capabilities, Achieving strategic fit, Issues affecting strategic fit, Expanding strategic scope, Drivers of supply chain performance, Framework for structuring drivers, Facilities, Inventory, Transportation, Information, Sourcing, Pricing.										
UNIT – II	10 Hrs									
Designing the Supply Chain Network: The role of distribution in the supply chain, Factors influencing distribution network design, Design options for a distribution network: Manufacturer storage with direct shipping (MSWDS), MSWDS and in-transit merge, Distributor storage with package carrier delivery, Distributor storage with last-mile delivery, Manufacturer or Distributor storage with customer pick-up, Retail storage with customer pickup, Selecting a distributor network design.										
Transportation in a Supply Chain: The role of transportation in a Supply Chain, Modes of transportation, Design options for a transportation network: Direct shipment network, Direct shipping with milk-runs, All shipments via central-DC, Shipping via DC using milk-runs, Tailored network, Tailored transportation: By customer density and distance, By size of customer, The Role of IT in transportation, Risk management in transportation, Making transportation decisions in practice.										
UNIT - III	10 Hrs									
Demand forecasting in a Supply Chain: The role of forecasting in a supply chain, Chara forecasts, Components of a forecast and forecasting methods, Basic approach to demand The role of IT in forecasting, Risk management in forecasting, Forecasting in practice.										
Sourcing and Cross-Functional Drivers in a Supply Chain: The role of sourcing in a supply chain, In- house or Outsource, Risks of using a Third-party, Supplier scoring and assessment, The procurement process, Sourcing planning and analysis, The Role of IT in Sourcing, Risk Management in Sourcing, Making Sourcing Decisions in Practice.										
UNIT IV	10 Hrs									
Information Technology in a Supply Chain: The Role of IT in a supply chain, The supply chain IT framework, Customer Relationship Management (CRM), Internal supply chain management, Supplier Relationship Management (SRM), The Transaction Management Foundation, The future of IT in the supply chain, Risk Management in IT, Supply Chain IT in Practice.										
Coordination in a Supply Chain: Lack of Supply Chain Coordination and the Bullwhip Effect on performance of lack of coordination, Obstacles to coordination in a su Managerial levers to achieve coordination, Building strategic partnerships and trust with chain, The Role of IT in Coordination, Achieving Coordination in Practice	pply chain,									

1.	Supply Chain Management–Strategy, Planning & OperationSunil Chopra, Peter Meindl& D												
	V Kalra-Pearson Prentice Hall (Education, South Asia)-Third Edition 2007												
2.	Supply Chain Redesign–Transforming Supply Chains into Integrated Value SystemsRobert B Handfield, Ernest L Nichols, Jr-Pearson Education/Financial Times Prentice Hall PTR-2002												
3. Modelling the Supply Chain -Jeremy F Shapiro, Duxbury, Thomson Learning, 2002, ISB 534-37363													
4.	Designing & Managing the Supply Chain. David Simchi Levi, Philip Kaminsky & Edith Simchi Levi; McGraw Hill												
Course	e Outcomes:												
	By the end of course with aid of design data handbook students shall be able to,												
CO1: [By the end of course with aid of design data handbook students shall be able to, bemonstrate the supply chain objectives, importance, decision phases, process views,												
CO1 : [[CO2 : [By the end of course with aid of design data handbook students shall be able to,												
CO1: [F CO2: [e	By the end of course with aid of design data handbook students shall be able to, Demonstrate the supply chain objectives, importance, decision phases, process views, Derformance with strategic fit and their impact on success of a supply chain. Develop a distribution network with different modes of transportation, understanding the												

Table: Matrix to describe the mapping of POs with Cos

Course		Programme Outcomes (POs)											Program Specific Outcomes (PSOs)						
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4			
CO1	2	2	-	2	3	-	2	2	3	2	1	2	2	3	2	3			
CO2	3	2	-	2	1	-	3	-	2	-	-	3	2	1	-	3			
CO3	2	-	-	3	-	2	1	1	3	-	-	3	1	-	2	2			
CO4	3	1	2	3	-	-	-	2	-	3	1	2	1	1	2	-			
							ŀ	ligh -	3, Me	dium	– 2, L	.ow - 1	L						

21UME 814 E		03 - Credits
L:T:P - 3 : 0: 0	TOOL DESIGN	CIE Marks : 50
Total Hours/Week: 3		SEE Marks : 50

UNIT – I	11 Hrs								
Tool Design Methods: Introduction, the de sign procedure, drafting, and design teo tooling drawing.	hniques in								
Design of Cutting Tools: Introduction, the metal cutting process, revision of metal cutting point cutting tools, milling cutters, drills and drilling, reamers, taps, selection of car determining the insert thickness for carbide tools.									
UNIT – II	11 Hrs								
 Locating and Clamping Methods: Introduction, basic principle of location, locating medevices, basic principle of clamping. Design of Drill Jigs: Introduction, types of drill jigs, general considerations in the design of drill bushings, methods of construction. 									
UNIT - III	10 Hrs								
 Design of Fixtures: Introduction, types of fixtures, fixtures and economic. Design of Press-working Tools: Power presses, cutting operations, types of die – cutting o and their design, evolution of blanking and progressive blanking. 	perations								
UNIT IV	12 Hrs								
Design of Sheet Metal Bending, Forming and Drawing Dies: Introduction, bending dies, forming dies, drawing dies, evolution of a draw die, progressive dies and selection of progressive dies. Strip development for progressive dies, evolution of progressive dies, examples of progressive dies. Extrusion dies, drop forging dies and auxiliary tools, problems. Plastics as Tooling Materials: Introduction, plastics commonly used as tooling materials, application									
of epoxy plastic tools, construction methods, metal forming operations with Uret calculating forces for Urethane pressure pads, problems.	hane dies,								
Reference Books:1. Cyril Donaldson, G H Lecain and V C Gold. Tool Design, 3rd edition, TMH Publishing	Co. Ltd.								

New Delhi, 2000

- 2. ASTME, Fundamentals of Tool Design, PHI (P) Ltd. New Delhi, 1983
- 3. Machine Tool Design and Numerical Control N. K. Mehta Tata McGraw Hill Publisher (P) Ltd, New Delhi 2006
- 4. Fundamentals of tool design Wilson F. W. ASME PHI, New Delhi 1984

Course Outcomes:

At the end of the course student will be able to

CO1: Apply the tool design procedure for cutting tools.

CO2: Analyze the locating and clamping methods for tool and work piece

CO3: Design the fixtures and jigs for press working tools, press tool operations

CO4: Design of sheet metal bending, forming and drawing dies

CO5: Analyze the commonly used polymer tooling materials with design aspects like pressure and forces

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course	Programme Outcomes (POs)									Program Specific Outcomes (PSOs)						
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	1	2	1	-	-	-	-	-	-	-	-	-	2	2	-	-
CO2	1	2	1	-	-	-	-	-	-	-	-	-	2	2	-	-
CO3	1	2	2	-	-	-	-	-	-	-	-	-	2	2	-	-
CO4	1	2	2	-	-	-	-	-	-	-	-	-	2	2	-	-
CO5	1	2	2	-	-	-	-	-	-	-	-	-	2	2	-	-

21UME 814 E		03 - Credits (3 : 0 : 0)
L:T:P - 3 : 0: 0	POWER PLANT ENGINEERING	CIE Marks : 50
Total Hours/Week: 3		SEE Marks : 50

UNIT – I	10 Hrs
Introduction Energy and power, Sources of power, Need power generation, Power plant cycles and o	
of power plant cycles, Layout of modern steam power plant, Essential requirements of s station, Selection of site for steam power station, Capacity of steam power plant, Choi	•
conditions.	
Steam Power Plant:	
Different types of fuels used for steam generation, Coal handling, Requirements of	-
handling plant, Coal handling systems, Equipment for burning coal in lump form, Stroke types of stokers, Advantages and disadvantages of using pulverized fuel, Equipment for	-
and burning of pulverized coal, Unit system and bin system, Coal burners, Fluidized bed co	• •
	10 Hrs
Ash and dust handling:	101113
Ash and dust handling:	
Ash handling equipment and ash handling systems, Dust collection, Removal of smoke an collectors, Efficiency of dust collectors, Uses of ash and dust, General layout of as collection systems, Fly ash, Fly ash composition, disposal and application.	
Chimney draught:	
Classification, Naturaldraught, Chimney height and diameter, Condition for maximur through chimney, Efficiency of chimney, Draught losses, Artificial draught, Forced, I Balanced draught, Advantages of mechanical draught, Numerical problems on chimney dr	nduced and
UNIT - III	10 Hrs
Boilers:	101113
	on of stoom
Classification and comparison, Selection of a boiler, Essentials of good boiler, Generation using forced circulation, High and supercritical pressures, L Mont, Benson, Velox, Schmitter, S	
and Ramson steam generators.	
Accessories:	
Accessories for the Steam Generator such as super-heaters, Desuperheater, Control of su	per heaters,
Economisers, Air Pre-heaters and re-heaters, Feed water heaters and evaporators. Performance of boilers:	
Evaporative capacity, Equivalent evaporation, Factor of evaporation, Boiler efficiency, Hea	at losses in a
boiler plant, Numerical problems on boiler performance.	

^{5 – 8} Sem Syllabus as per NEP_ Mechanical Engineering _BE_ Dated: 05.05.2023

UNIT IV	10 Hrs
Steam turbines:	
Steam nozzles, Nozzle efficiency, Compounding of steam turbines, Difference between impo	ulse and
reaction steam turbines, Turbine efficiencies. Steam condensers; Classification, Comparison I	betweer
jet and surface condensers, Numerical problems on steam turbines.	
Cooling ponds and Cooling towers:	
Introduction, Natural and artificial ponds, Cooling ponds, Spray ponds. Cooling towers: Intro Natural and forced draft cooling towers, Comparison between natural and forced draft towers. Feed water treatment: Impurities in water and troubles caused by the impurities, Me feed water treatment, pH value of water. Cogeneration power plants: Classification, Topping and bottoming cycles, Advantages and disadvantages of steam power	cooling thods o
Reference Books:	
 Power Plant Technology ,M.M. EL-Wakil,McGraw Hill, International, 1994. 	
2. Power Plant Engineering , P.K Nag, Tata McGraw Hill, 3 rd Ed. 2001	
3. Power Plant Engineering , R.K.Rajput, Laxmi Publications, 4 th Ed. 2008.	
4. Power Plant Engineering , Domakundawar, Dhanpath Rai and sons, New delhi, 2003.	
Course Outcomes**:	
At the end of the course student will be able to CO1: Apply the knowledge of power plant engineering in selecting the types of fuels and burn methods to produce steam. CO2: Apply the knowledge of power plant engineering in selecting ash handling system, dust	-
system and chimney draught for a steam power plant.	
CO3: Apply the knowledge of power plant engineering to <i>analyze</i> boilers, boiler accessories as performance of boilers.	
CO4: Apply the knowledge of power plant engineering to analyze steam turbines, cooling pon	nds,

CO4: Apply the knowledge of power plant engineering to *analyze* steam turbines, cooling cooling towers and co-generation power plants.

* Books to be listed as per the format with	decreasing level of coverage of syllabus
books to be listed as per the format with	accicasing level of coverage of synabus

Course				Prog	ramı	ne O	utcor	nes (POs)					Program Dutcome		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	2	1	1	1	2	1	3	3	1	1	2	2	1	2	2
CO2	3	2	1	1	1	2	1	3	3	1	1	2	2	1	2	2
CO3	3	2	1	1	1	2	1	3	3	1	1	2	2	1	2	2
CO4	3	2	1	1	1	2	1	3	3	1	1	2	2	1	2	2

21UME 821N		03 Credits (3:0:0)
L:T:P - 3 : 0: 0	Fluid Power Automation	CIE Marks:50
Total Hours/Week: 3	(Open Elective)	SEE Marks:50

Unit-I	10 Hours
Introduction to Automation and Pascal's law:	
Fixed Automation, Programmable Automation, Flexible Automation, Structure of hydrauli	c system.
Pascal's law, Applications of Pascal's law with problems using hand operated	•
jack and air to hydraulic pressure booster	,
Source of Hydraulic Power:	
Pumping theory, pump classification, working of external gear pump and variable di	isplacement
vane pump, Problems on pump flow rate.	opiacement
Hydraulic Actuators and Motors:	
Linear Hydraulic Actuators [cylinders], Hydraulic Rotary external gear motor and vane mo	otor
Unit-II	10 Hours
Control Components in Hydraulic Systems:	
Directional Control Valves – Symbolic representation, Constructional features, pressure	relief valve,
flow control valve and check valve, valve actuation symbols	,
Electrical components required to operate Hydraulic system	
Normally open contact switch and normally closed contact switch, Relays and solenoids	s, proximity
sensors	, , ,
Electro Hydraulic Circuit Design and Analysis:	
Control of single and Double – acting Hydraulic cylinder, regenerative circuit, drillir	ng machine
application, Metre-in and Metre-out circuits, pump unloading circuit and double pum	-
system, Hydraulic Braking and Antilock Braking System (ABS) of an Automobile.	. ,
Unit-III	10 Hours
Pneumatic Controls:	
Structure of pneumatic system, Pneumatic Actuators: Linear cylinders and Rod less cylind	lers –types,
working, advantages and disadvantages. Rotary external gear motor	
Directional and Flow Control valves:	
Poppet valves, spool valve, rotary valve, pilot operated valve, pilot operated check valve	e, and flow
control valve	
Unit-IV	10 Hours
Electro-Pneumatic Circuit Design:	
Direct and indirect actuation pneumatic cylinders. Flow control valves, speed co	ontrol of
cylinders, supply air throttling and exhaust air throttling, quick exhaust valve and shuttle	
Use of Logic gates - OR and AND gates in pneumatic applications. Practical Examples inv	
use of logic gates	U

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course		Programme Outcomes (POs)					Program Specific Outcomes (PSOs)									
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	1	2	-	-	-	-	-	1	1	-	1	1	-	-	-
CO2	2	1	-	1	-	-	-	-	1	1	-	1	-	-	-	-
CO3	1	1	2	-	-	-	-	-	1	1	-	1	1	-	-	-
CO4	1	1	2	-	-	-	-	-	1	1	-	1	1	-	-	-

21UME 822N	ADVANCED MANUFACTURING	03 - Credits (3 : 0 : 0)
L:T:P - 3 : 0: 0	TECHNOLOGY	CIE Marks : 50
Total Hours/Week: 3	(Open Elective)	SEE Marks : 100

Unit - I	10 Hrs
Introduction: Introduction to CAD/CAM, product system facilities: Low, medium Manufacturing support systems, Automation in production systems. Automated manufacturin Computerized manufacturing systems. Reasons for automating, Automation principles and Discussions. Fundamentals of Automated Production Lines: Introduction, System configurations, Work part transfer mechanisms, Storage buffers, Con production line.	ng systems. strategies.
UNIT - II	10 Hrs
Analysis of Transfer Lines with no internal storage: Basic terminology and Performance Workstation breakdown analysis: Upper bound approach, Lower bound approach, and Transfer Lines with storage buffers. Numerical examples. Automated Assembly System:	
Introduction, System configurations, Parts delivery at workstations, Applications. Quantitative Parts delivery system, Multi-station and single station assembly machines. Partial automation.	•
Parts delivery system, Multi-station and single station assembly machines. Partial automation.	10 Hrs ises.
Parts delivery system, Multi-station and single station assembly machines. Partial automation. Unit - III NC Part Programming: Basic components of an NC system, EIA and ISO coding standards, NC part programming exerc Computer Assisted Part Programming:05 Hours Definingpart geometry, Specifying tool path and operation sequence, Computer task in	10 Hrs ises.

Refere	nce Books
1.	
2.	Mastering CAD/CAM Ibrahim Zeid Tata McGraw Hill 2008
3.	CAD/CAM Principles and Applications P. N. Rao Tata McGraw Hill 2nd Edition
4.	Computer Integrated Manufacturing Bharat Vijamuri Sunstar Publisher 4th Edition
	2018
Course	e Outcomes:
At the	end of the course the student should be able to:
tl CO2: U p o a	Inderstand and apply good comprehension study of two aspects of production systems and how hey are sometimes automated and /or computerized in modern industrial practice. Inderstand and apply the basic methods of examination of the technology of automated production lines and develop several mathematical models that can be used to analyze their operation. Use of mechanized and automated devices to perform the various assembly tasks in an assembly line or cell.
	Inderstand, apply and integrate, programmable automation in which the mechanical actions of the machine tool or other equipment are controlled by a program containing coded alphanumeric
d	lata.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

Course		Programme Outcomes (Pos)/Programme Specific Outcomes (PSO)														
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
1	2	2	-	-	-	-	2	1	2	2	1	2	2	2	1	-
2	2	2	2	-	-	-	2	1	2	2	1	2	2	2	2	-
3	2	2	1	-	-	-	2	1	2	2	1	2	1	1	2	-
4	2	2	2	-	-	-	2	1	2	2	1	2	2	2	1	-
		High -3, Medium – 2, Low - 1														

NUME 701 P		03 - Credits (0 : 0 : 6)
Hrs./Week : 03	VII SEMESTER	CIE Marks : 50
Total Hours : 40	PROJECT PHASE I	SEE Marks : 50

Table: Matrix to describe the mapping of POs with Cos

Course Outcomes		Programme Outcomes (POs)											
(COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12	
1													
2													

3						
4						

NUME 702 L		01 - Credits (0 : 0 : 2)
Hrs./Week : 03	VII SEMESTER	CIE Marks : 50
Total Hours : 40	CNC LABORATORY	SEE Marks : 50

Part-A
1. Programming on lathe for facing
2. Programming on lathe for simple turning
3. Programming on lathe for step turning
4. Programming on lathe for groove cutting
Part-B
5. Programming on milling with drill tap attachment for facing
6. Programming on milling with drill tap attachment for drilling
7. Programming on milling with drill tap attachment for tool path movement
Scheme for Examination:
1. Each laboratory subject is evaluated for 100 marks (50 CIE and 50 SEE).
2. The CIE in laboratory in classes is carried out for 50 marks (30 marks for the performance and term work).
3. For remaining 20 marks one practical test to be conducted.
The SEE practical is conducted for 50 marks two question to be set from each Part A, and Part B. for
20 marks each and 10 marks Viva voce.
1. Understand the basic procedures and concepts of programming, set up and operation of a
CNC Machining Center.
2. Identify and understand the basic programming codes.
3. Create geometry and tool paths from the specifications for simple parts
4. Identify and define the functions of the CNC machine control.
5. Set up the CNC machining center for manufacturing simple parts
6. Manufacture simple parts on the CNC machining center.

ſ	Course Outcomes		Programme Outcomes (POs)											
	(COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12	
ſ	1	2	3	3	3	3	1	2	1	3	2	2	3	
	2	3	3	3	3	3	1	1	2	3	3	3	3	

Table: Matrix to describe the mapping of POs with Cos

3	2	2	2	2	1	1	2	1	3	1	2	1
4	3	3	3	2	3	3	1	3	3	2	3	2